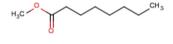
Contents lists available at ScienceDirect

Food and Chemical Toxicology

journal homepage: www.elsevier.com/locate/foodchemtox

Short Review

RIFM fragrance ingredient safety assessment, Methyl octanoate, CAS Registry Number 111-11-5



- ^a Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
- b Member Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
- c Member Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-
- d Member Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
- ^e Member Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
- f Member Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
- g Member Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
- ^h Member Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
- Member Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146. USA
- ^j Member of Expert Panel, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
- k Member Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
- ¹ Member Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-
- m Member Expert Panel, The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan

ARTICLE INFO

Handling Editor: Dr. Jose Luis Domingo

Version: 041721. Initial publication. All fragrance materials are evaluated on a five-year rotating basis. Revised safety assessments are published if new relevant data become available.

Name: Methyl octanoate CAS Registry Number: 111-11-5

2-Box Model - A RIFM, Inc. proprietary in silico tool used to calculate fragrance air exposure concentration

AF - Assessment Factor

(continued on next column)

(continued)

BCF - Bioconcentration Factor

CNIH - Confirmation of No Induction in Humans test. A human repeat insult patch test that is performed to confirm an already determined safe use level for fragrance ingredients (Na et al., 2020)

Creme RIFM Model - The Creme RIFM Model uses probabilistic (Monte Carlo) simulations to allow full distributions of data sets, providing a more realistic estimate of aggregate exposure to individuals across a population (Comiskey et al., 2015, 2017; Safford et al., 2015a; Safford et al., 2017) compared to a deterministic aggregate approach

(continued on next page)

E-mail address: gsullivan@rifm.org (G. Sullivan).

https://doi.org/10.1016/j.fct.2021.112362

Received 21 April 2021; Accepted 20 June 2021 Available online 26 June 2021 0278-6915/© 2021 Elsevier Ltd. All rights reserved.

^{*} Corresponding author.

(continued)

DEREK - Derek Nexus is an in silico tool used to identify structural alerts

DST - Dermal Sensitization Threshold

ECHA - European Chemicals Agency

ECOSAR - Ecological Structure-Activity Relationships Predictive Model

EU - Europe/European Union

GLP - Good Laboratory Practice

IFRA - The International Fragrance Association

LOEL - Lowest Observable Effect Level

MOE - Margin of Exposure

MPPD - Multiple-Path Particle Dosimetry. An *in silico* model for inhaled vapors used to simulate fragrance lung deposition

NA - North America

NESIL - No Expected Sensitization Induction Level

NOAEC - No Observed Adverse Effect Concentration

NOAEL - No Observed Adverse Effect Level

NOEC - No Observed Effect Concentration

NOEL - No Observed Effect Level

OECD - Organisation for Economic Co-operation and Development

OECD TG - Organisation for Economic Co-operation and Development Testing Guidelines

PBT - Persistent, Bioaccumulative, and Toxic

PEC/PNEC - Predicted Environmental Concentration/Predicted No Effect Concentration

ORA - Quantitative Risk Assessment

QSAR - Quantitative Structure-Activity Relationship

REACH - Registration, Evaluation, Authorisation, and Restriction of Chemicals

RfD - Reference Dose

RIFM - Research Institute for Fragrance Materials

RQ - Risk Quotient

 $\label{eq:Statistically Significant - Statistically significant difference in reported results as compared to controls with a p < 0.05 using appropriate statistical test\\$

TTC - Threshold of Toxicological Concern

UV/Vis spectra - Ultraviolet/Visible spectra

VCF - Volatile Compounds in Food

VoU - Volume of Use

vPvB - (very) Persistent, (very) Bioaccumulative

WoE - Weight of Evidence

The Expert Panel for Fragrance Safety* concludes that this material is safe as described in this safety assessment.

This safety assessment is based on the RIFM Criteria Document (Api, 2015), which should be referred to for clarifications.

Each endpoint discussed in this safety assessment includes the relevant data that were available at the time of writing (version number in the top box is indicative of the date of approval based on a 2-digit month/day/year), both in the RIFM Database (consisting of publicly available and proprietary data) and through publicly available information sources (e.g., SciFinder and PubMed). Studies selected for this safety assessment were based on appropriate test criteria, such as acceptable guidelines, sample size, study duration, route of exposure, relevant animal species, most relevant testing endpoints, etc. A key study for each endpoint was selected based on the most conservative endpoint value (e.g., PNEC, NOAEL, LOEL, and NESIL).

*The Expert Panel for Fragrance Safety is an independent body that selects its own members and establishes its own operating procedures. The Expert Panel is comprised of internationally known scientists that provide RIFM with guidance relevant to human health and environmental protection.

Summary: The existing information supports the use of this material as described in this safety assessment.

Methyl octanoate was evaluated for genotoxicity, repeated dose toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, and environmental safety. Data from read-across analog methyl valerate (CAS # 624-24-8) show that methyl octanoate is not expected to be genotoxic. Data on read-across analog ethyl hexanoate (CAS # 123-66-0) provide a calculated margin of exposure (MOE) > 100 for the repeated dose toxicity and reproductive toxicity endpoints. Data on methyl octanoate provided a No Expected Sensitization Induction Level (NESIL) of 4700 µg/cm² for the skin sensitization endpoint. The phototoxicity/photoallergenicity endpoints were evaluated based on ultraviolet (UV) spectra; methyl octanoate is not expected to be phototoxic/ photoallergenic. For the local respiratory endpoint, a calculated MOE >100 was provided by the read-across analog butyl propionate (CAS # 590-01-2). The environmental endpoints were evaluated; methyl octanoate was found not to be Persistent, Bioaccumulative, and Toxic (PBT) as per the International Fragrance Association (IFRA) Environmental Standards, and its risk quotients, based on its current volume of use in Europe and North America (i.e., Predicted Environmental Concentration/Predicted No Effect Concentration [PEC/PNEC]), are <1.

Human Health Safety Assessment

(RIFM, 2016b; RIFM, 2016a)

(continued on next column)

(continued)

Genotoxicity: Not expected to be

genotoxio

Repeated Dose Toxicity: NOAEL = RIFM (2017)

333 mg/kg/day.

Reproductive Toxicity: NOAEL = RIFM (2017) 1000 mg/kg/day. Skin Sensitization: NESIL = 4700 RIFM (2018)

 $\mu g/cm^2$.

Phototoxicity/ (UV Spectra, RIFM Database)

Photoallergenicity: Not expected to be phototoxic/

photoallergenic.

Local Respiratory Toxicity: (Banton, 2000)

NOAEC = 1331.19 mg/m^3 .

Environmental Safety Assessment

Hazard Assessment:

Persistence: Screening-level: (EPI Suite v4.11; US EPA, 2012a)

3.29 (BIOWIN 3)

Bioaccumulation: Screening- (EPI Suite v4.11; US EPA, 2012a)

level: 72 L/kg

Ecotoxicity: Screening-level: (RIFM Framework; Salvito, 2002)

Fish LC50: 15.16 mg/L

Conclusion: Not PBT or vPvB as per IFRA Environmental Standards

Risk Assessment:

Screening-level: PEC/PNEC (North (RIFM Framework; Salvito, 2002)

America and Europe) < 1

Critical Ecotoxicity Endpoint: (RIFM Framework: Salvito, 2002)

Fish LC50: 15.16 mg/L RIFM PNEC is: 0.01516 μg/L

 Revised PEC/PNECs (2015 IFRA VoU): North America and Europe: Not applicable; cleared at the screening-level

1. Identification

- 1. Chemical Name: Methyl octanoate
- 2. CAS Registry Number: 111-11-5
- 3. Synonyms: Methyl caprylate; Methyl octylate; Octanoic acid, methyl ester; Caprylioc acid methyl ester; アルカン酸($C=6\sim10$)アルキル($C=1\sim10$); Methyl octanoate
- 4. Molecular Formula: C H O
- 5. Molecular Weight: 158.24
- 6. RIFM Number: 6116
- 7. **Stereochemistry:** No stereoisomer possible.

2. Physical data

- 1. **Boiling Point:** 194 °C (Fragrance Materials Association [FMA Database]), 190.83 °C (EPI Suite)
- 2. Flash Point: 82 °C (Globally Harmonized System), 163 °F; CC (FMA Database)
- 3. **Log K_{ow}:** 3.32 (EPI Suite)
- 4. **Melting Point**: -20.94 °C (EPI Suite)
- 5. Water Solubility: 101.9 mg/L (EPI Suite)
- 6. Specific Gravity: 0.877 (FMA Database)
- 7. Vapor Pressure: 0.351 mm Hg at 20 $^{\circ}$ C (EPI Suite v4.0), 0.2 mm Hg 20 $^{\circ}$ C (FMA Database), 0.513 mm Hg at 25 $^{\circ}$ C (EPI Suite)
- 8. **UV Spectra:** No significant absorbance between 290 and 700 nm; the molar absorption coefficient is below the benchmark (1000 L mol⁻¹ · cm⁻¹)
- Appearance/Organoleptic: colorless oily liquid. Powerful wineyfruity, orange-like odor of moderate tenacity. Oily-fruity somewhat orange-like taste (Arctander, 1969).

3. Volume of use (worldwide band)

1. 0.1-1 metric ton per year (IFRA, 2015)

4. Exposure to fragrance ingredient (Creme RIFM aggregate exposure model v2.0)

- 95th Percentile Concentration in Fine Fragrance: 0.026% (RIFM, 2019)
- Inhalation Exposure*: 0.000074 mg/kg/day or 0.0054 mg/day (RIFM, 2019)
- 3. Total Systemic Exposure**: 0.0014 mg/kg/day (RIFM, 2019)

*95th percentile calculated exposure derived from concentration survey data in the Creme RIFM aggregate exposure model (Comiskey, 2015, 2017; Safford, 2015, 2017).

**95th percentile calculated exposure; assumes 100% absorption unless modified by dermal absorption data as reported in Section IV. It is derived from concentration survey data in the Creme RIFM aggregate exposure model and includes exposure via dermal, oral, and inhalation routes whenever the fragrance ingredient is used in products that include these routes of exposure (Comiskey, 2015, 2017; Safford, 2015, 2017).

5. Derivation of systemic absorption

Dermal: Assumed 100%
 Oral: Assumed 100%
 Inhalation: Assumed 100%

6. Computational toxicology evaluation

1. Cramer Classification: Class I, Low

Expert Judgment	Toxtree v 2.6	OECD QSAR Toolbox v 3.2
I	I	I

2. Analogs Selected:

- a. Genotoxicity: Methyl valerate (CAS # 624-24-8)
- b. Repeated Dose Toxicity: Ethyl hexanoate (CAS # 123-66-0)
- c. Reproductive Toxicity: Ethyl hexanoate (CAS # 123-66-0)
- d. Skin Sensitization: None
- e. Phototoxicity/Photoallergenicity: None
- f. Local Respiratory Toxicity: Butyl propionate (CAS # 590-01-2)
- g. Environmental Toxicity: None
- 3. Read-across Justification: See Appendix below

7. Metabolism

Not considered for this risk assessment and therefore not reviewed except where it may pertain in specific endpoint sections as discussed below.

8. Natural occurence

Methyl octanoate is reported to occur in nature in the following foods by the VCF*:

Acerola (Malpighia).

Annatto (Bixa orellana L.)

Apple brandy.

Apple fresh (Malus species).

Apricot (Prunus armeniaca L.)

Black currants (Ribes nigrum L.)

Blue cheeses.

Cabbage (Brassica oleracea).

California pepper (Schinus molle L.)

Cape gooseberry (Physalis peruviana L.)

Capers (Capparis spinoza).

Capsicum species.

Ceriman, pinanona (Monstera deliciosa Liebm.)

Cheddar cheese.

Cheese, various types.

Cherimoya (Annona cherimolia Mill.)

Cider (Apple wine).

Citrus fruits.

Cloves (Eugenia caryophyllata Thunberg).

Coconut (Cocos nucifera L.)

Custard apple, atemoya (Annona atemoya).

Durian (Durio zibethinus).

Grape (Vitis species).

Grape brandy.

Guava and feyoa

Hop (Humulus lupulus).

Kiwifruit (Actinidia chinensis, syn. A. deliciosa).

Lamb's lettuce (Valerianella locusta).

Litchi wine.

Malt.

Mangifera species.

Milk and milk products.

Mountain papaya (C. Candamarcensis, C. Pubescens).

Muruci (Byrsonima crassifolia).

Mushroom.

Mussel.

Naranjilla fruit (Solanum quitoense Lam.)

Nectarine.

Noni (Morinda citrifolia L.)

Olive (Olea europaea).

Papaya (Carica papaya L.)

Passion fruit (Passiflora species).

Pawpaw (Asimina triloba Dunal.)

Peach (Prunus persica L.)

Pear (Pyrus communis L.)

Pear brandy.

Peas (Pisum sativum L.)

Pepper (Piper nigrum L.)

Pineapple (Ananas comosus).

Plum (Prunus species).

Plum brandy.

Potato (Solanum tuberosum L.)

Quince, marmelo (Cydonia oblonga Mill.)

Raspberry, blackberry, and boysenberry.

Rooibos tea (Aspalathus linearis).

Rum.

Soursop (Annona muricata L.)

Spineless monkey orange (Strychnos madagasc.)

Starfruit (Averrhoa carambola L.)

Strawberry (Fragaria species).

Swiss cheeses.

Tea.

Tequila (Agave tequilana).

Tomato (Lycopersicon esculentum Mill.)

Vanilla.

Wine.

*VCF (Volatile Compounds in Food): database/Nijssen, L.M.; Ingen-Visscher, C.A. van; Donders, J.J.H. (eds). – Version 15.1 – Zeist (The Netherlands): TNO Triskelion, 1963–2014. A continually updated database containing information on published volatile compounds that have been found in natural (processed) food products. Includes FEMA GRAS and EU-Flavis data.

9. REACH Dossier

Available; accessed 01/05/21 (ECHA, 2011).

10. Conclusion

The maximum acceptable concentrations^a in finished products for methyl octanoate are detailed below.

IFRA Category ^b	Description of Product Type	Maximum Acceptable Concentrations ^a in Finished Products (%) ^c
1	Products applied to the lips (lipstick)	0.36
2	Products applied to the axillae	0.11
3	Products applied to the face/body using fingertips	2.2
4	Products related to fine fragrances	2.0
5A	Body lotion products applied to the face and body using the hands (palms), primarily leave-on	0.51
5B	Face moisturizer products applied to the face and body using the hands (palms), primarily leave-on	0.51
5C	Hand cream products applied to the face and body using the hands (palms), primarily leave-on	0.51
5D	Baby cream, oil, talc	0.17
6	Products with oral and lip exposure	1.2
7	Products applied to the hair with some hand contact	4.1
8	Products with significant ano- genital exposure (tampon)	0.17
9	Products with body and hand exposure, primarily rinse-off (bar soap)	3.9
10A	Household care products with mostly hand contact (hand dishwashing detergent)	11
10B	Aerosol air freshener	14
11	Products with intended skin contact but minimal transfer of fragrance to skin from inert substrate (feminine hygiene pad)	0.17
12	Other air care products not intended for direct skin contact, minimal or insignificant transfer to skin	Not restricted

Note: a Maximum acceptable concentrations for each product category are based on the lowest maximum acceptable concentrations (based on systemic toxicity, skin sensitization, or any other endpoint evaluated in this safety assessment). For methyl octanoate, the basis was the reference dose of 3.33 mg/kg/day, a predicted skin absorption value of 80%, and a skin sensitization NESIL of 4700 μ g/cm²

^bFor a description ^{of} the categories refer to the IFRA RIFM Information Booklet (https://www.rifm.org/downloads/RIFM-IFRA%20Guidance-for-the-use-of-IFRA-Standards.pdf).

^cCalculations by Creme RIFM Aggregate Exposure Model v3.1.1.

11. Summary

11.1. Human health endpoint summaries

11.1.1. Genotoxicity

Based on the current existing data, methyl octanoate does not present a concern for genetic toxicity.

11.1.1.1. Risk assessment. Methyl octanoate was assessed in the Blue-Screen assay and found positive for cytotoxicity and negative for genotoxicity in the presence and absence of metabolic activation (RIFM, 2013). BlueScreen is a human cell-based assay for measuring the genotoxicity and cytotoxicity of chemical compounds and mixtures. Additional assays on a more reactive read-across material were considered to fully assess the potential mutagenic or clastogenic effects of the target

material.

There are no studies assessing the mutagenicity of methyl octanoate. The mutagenic activity of read-across material methyl valerate (CAS # 624-24-8; see Section VI) has been evaluated in a bacterial reverse mutation assay conducted in compliance with GLP regulations and in accordance with OECD TG 471 using the standard plate incorporation method. Salmonella typhimurium strains TA98, TA100, TA1535, TA1537, and Escherichia coli strain WP2uvrA were treated with methyl valerate in dimethyl sulfoxide (DMSO) at concentrations up to 5000 $\mu g/plate$. No increases in the mean number of revertant colonies were observed at any tested dose in the presence or absence of S9 (RIFM, 2016b). Under the conditions of the study, methyl valerate was not mutagenic in the Ames test, and this can be applied to methyl octanoate.

There are no studies assessing the clastogenicity of methyl octanoate. The clastogenic activity of methyl valerate was evaluated in an *in vitro* micronucleus test conducted in compliance with GLP regulations and in accordance with OECD TG 487. Human peripheral blood lymphocytes were treated with methyl valerate in DMSO at concentrations up to 1160 μ g/mL in the presence and absence of metabolic activation (S9) for 3 and 24 h. Methyl valerate did not induce binucleated cells with micronuclei when tested up to cytotoxic levels/the maximum dose in either non-activated or S9-activated test systems (RIFM, 2016a). Under the conditions of the study, methyl valerate was considered to be non-clastogenic in the *in vitro* micronucleus test, and this can be applied to methyl octanoate.

Based on the available data, methyl octanoate does not present a concern for genotoxic potential.

Additional References: None.

Literature Search and Risk Assessment Completed On: 12/07/20.

11.1.2. Repeated dose toxicity

The MOE for methyl octanoate is adequate for the repeated dose toxicity endpoint at the current level of use.

11.1.2.1. Risk assessment. There are insufficient repeated dose toxicity data on methyl octanoate. Read-across material ethyl hexanoate (CAS # 123-66-0; see Section VI) has sufficient repeated dose toxicity data that can be used to support the repeated dose toxicity endpoint. An OECD 422/GLP combined repeated dose toxicity with reproduction/developmental toxicity screening test was conducted in Sprague Dawley rats. Groups of 12 rats/sex/dose were administered test material ethyl hexanoate (ethyl caproate) at doses of 0, 100, 300, or 1000 mg/kg/day via oral gavage. Males were dosed for at least 50 days (2 weeks prior to mating and continued through the day before euthanasia), while females were dosed for 2 weeks prior to mating and continued through lactation day (LD) 13. Additional animals (6 rats/sex/group) in the control and high-dose recovery groups received ethyl caproate but were not mated; they were assigned to a 2-week period of recovery. One female in the control group was euthanized on LD 3 because all pups were found expired. This was considered to be incidental since it was observed in the control group, and there were no clinical signs of toxicity. At 1000 mg/ kg/day, statistically significant increased prothrombin time in both sexes and statistically significant increased kidney weights in females were observed. Furthermore, statistically significant decreases in gamma glutamyl transpeptidase were observed in all treatment group males. A statistically significant increase in thyroid hormone (T4) was observed in adult males and pups of the highest dose group. Since there were no correlated microscopic findings associated with any of the alterations observed in the highest dose group, these findings were not considered to be toxicologically relevant. Reversibility was also observed in the high-dose animals after the recovery period. Thus, the NOAEL for systemic toxicity was considered to be 1000 mg/kg/day, the highest dose tested (RIFM, 2017; also available at ECHA, 2017a).

A default safety factor of 3 was used when deriving a NOAEL from an

OECD 422 study (ECHA, 2012). The safety factor has been approved by the Expert Panel for Fragrance Safety*.

Thus, the derived NOAEL for the repeated dose toxicity data is 1000/3, or 333 mg/kg/day.

Therefore, the methyl octanoate MOE for the repeated dose toxicity endpoint can be calculated by dividing the ethyl hexanoate NOAEL in mg/kg/day by the total systemic exposure to methyl octanoate, 333/0.0014, or 237857.

In addition, the total systemic exposure to methyl octanoate (1.4 μ g/kg/day) is below the TTC (30 μ g/kg/day; Kroes, 2007) for the repeated dose toxicity endpoint of a Cramer Class I material at the current level of use.

11.1.2.2. Derivation of reference dose (RfD). Section X provides the maximum acceptable concentrations in finished products, which take into account skin sensitization and application of the Quantitative Risk Assessment (QRA2) described by Api et al. (RIFM, 2020b) and a reference dose of 3.33 mg/kg/day.

The RIFM Criteria Document (Api, 2015) calls for a default MOE of 100 (10 \times 10), based on uncertainty factors applied for interspecies (10 \times) and intraspecies (10 \times) differences. The reference dose for methyl octanoate was calculated by dividing the lowest NOAEL (from the Repeated Dose and Reproductive Toxicity sections) of 333 mg/kg/day by the uncertainty factor, 100 = 3.33 mg/kg/day.

*The Expert Panel for Fragrance Safety is composed of scientific and technical experts in their respective fields. This group provides advice and guidance.

Additional References: Alfin-Slater (1965); Bar (1967).

Literature Search and Risk Assessment Completed On: 11/25/20.

11.1.3. Reproductive toxicity

The MOE for methyl octanoate is adequate for the reproductive toxicity endpoint at the current level of use.

11.1.3.1. Risk assessment. There are insufficient reproductive toxicity data on methyl octanoate. Read-across material ethyl hexanoate (CAS # 123-66-0; see Section VI) has sufficient reproductive toxicity data that can be used to support the reproductive toxicity endpoint. An OECD 422/GLP combined repeated dose toxicity with reproduction/developmental toxicity screening test was conducted in Sprague Dawley rats. Groups of 12 rats/sex/dose were administered test material ethyl hexanoate (ethyl caproate) at doses of 0, 100, 300, or 1000 mg/kg/day via oral gavage. Males were dosed for at least 50 days (2 weeks prior to mating and continued through the day before euthanasia), while females were dosed for 2 weeks prior to mating and continued through LD 13. Additional animals (6 rats/sex/group) in the control and high-dose recovery groups received ethyl caproate but were not mated; they were assigned to a 2-week recovery period. In addition to systemic toxicity parameters, the reproductive toxicity parameters were also assessed. One female in the control group was euthanized on LD 3 because all pups were found expired. This was considered to be incidental since it was observed in the control group, and there were no clinical signs of toxicity. Non-parturition was also observed in 1 female each at the 100, 300, and 1000 mg/kg/day dose groups; these dams were euthanized on GD 28. This was considered incidental since there were no treatmentrelated macroscopic or microscopic findings. A statistically significant increase in thyroid hormone (T4) was observed in adult males (1.14-fold of control) and pups (1.20-fold of control) of the highest dose group. Since there were no correlated changes in other parameters, including microscopic findings in thyroids (with parathyroids), this was not considered to be toxicologically relevant. No treatment-related adverse effects were observed in the estrous cycle, pre-coital time, fertility data, reproductive and littering findings, clinical signs, body weight, anogenital distance, nipple retention, or external examination of pups.

Thus, the NOAEL for reproductive toxicity was considered to be 1000 mg/kg/day, the highest dose tested (RIFM, 2017; ECHA, 2017a). Therefore, the methyl octanoate MOE for the reproductive toxicity endpoint can be calculated by dividing the ethyl hexanoate NOAEL in mg/kg/day by the total systemic exposure to methyl octanoate, 1000/0.0014, or 714286.

In addition, the total systemic exposure to methyl octanoate (1.4 μ g/kg/day) is below the TTC (30 μ g/kg/day; Kroes, 2007; Laufersweiler, 2012) for the reproductive toxicity endpoint of a Cramer Class I material at the current level of use.

Additional References: None.

Literature Search and Risk Assessment Completed On: 12/07/20

11.1.4. Skin sensitization

Based on the existing data, methyl octanoate is considered to be a skin sensitizer with a defined NESIL of $4700 \mu g/cm^2$.

11.1.4.1. Risk assessment. Based on the existing data, methyl octanoate is considered a skin sensitizer. The chemical structure of this material indicates that it would not be expected to react with skin proteins directly (Roberts, 2007; Toxtree v3.1.0; OECD Toolbox v4.2). In a local lymph node assay (LLNA), methyl octanoate was found to be sensitizing with a reported EC3 value of 19.6% (4900 μ g/cm²) based on linear regression (RIFM, 2002). Further, in a confirmatory Confirmation of No Induction in Humans (CNIH) with 4724 μ g/cm² of methyl octanoate in 1:3 ethanol:diethyl phthalate (1:3 EtOH:DEP), no reactions indicative of sensitization were observed in any of the 103 volunteers (RIFM, 2018).

Based on the weight of evidence (WoE) from structural analysis and animal and human studies, methyl octanoate is a sensitizer with a WoE NESIL of 4700 μ g/cm² (Table 1). Section X provides the maximum acceptable concentrations in finished products, which take into account skin sensitization and application of the Quantitative Risk Assessment (QRA2) described by Api et al. (RIFM, 2020b) and a reference dose of 3.33 mg/kg/day).

Additional References: None.

Literature Search and Risk Assessment Completed On: 12/18/20.

$11.1.5.\ Phototoxicity/photoaller genicity$

Based on the available UV/Vis spectra, methyl octanoate would not be expected to present a concern for phototoxicity or photoallergenicity.

11.1.5.1. Risk assessment. There are no phototoxicity studies available for methyl octanoate in experimental models. UV/Vis absorption spectra indicate no significant absorption between 290 and 700 nm. The corresponding molar absorption coefficient is below the benchmark of concern for phototoxicity and photoallergenicity (Henry, 2009). Based

Table 1
Data Summary for methyl octanoate.

LLNA Potency	Human Data				
Weighted Mean EC3 Value µg/cm² (No. Studies)	Classification Based on Animal Data ^a	NOEL- CNIH (Induction) µg/cm ²	NOEL- HMT (Induction) μg/cm ²	LOEL ^b (Induction) µg/cm ²	WoE NESIL ^c μg/ cm ²
4900 [1]	Weak	4724	NA	NA	4700

NOEL = No observed effect level; CNIH = Confirmation of No Induction in Humans; HMT = Human Maximization Test; LOEL = lowest observed effect level; NA = Not Available.

^a Based on animal data using classification defined in ECETOC, Technical Report No. 87, 2003.

b Data derived from CNIH or HMT.

^c WoE NESIL limited to 2 significant figures.

on the lack of absorbance, methyl octanoate does not present a concern for phototoxicity or photoallergenicity.

11.1.5.2. UV spectra analysis. UV/Vis absorption spectra (OECD TG 101) were obtained. The spectra indicate no significant absorbance in the range of 290–700 nm. The molar absorption coefficient is below the benchmark of concern for phototoxic effects, 1000 L $\mathrm{mol}^{-1} \cdot \mathrm{cm}^{-1}$ (Henry, 2009).

Additional References: None.

Literature Search and Risk Assessment Completed On: 12/04/20.

11.1.6. Local Respiratory Toxicity

There are no inhalation data available on methyl octanoate; however, in a 13-week, subchronic inhalation exposure study for the analog butyl propionate (CAS # 590-01-2; see Section VI), a NOAEC of 684.19 mg/m³ was reported (Banton, 2000; Ulrich, 2000).

11.1.6.1. Risk assessment. The inhalation exposure estimated for combined exposure was considered along with toxicological data observed in the scientific literature to calculate the MOE from inhalation exposure when used in perfumery. In a 13-week inhalation exposure study, Sprague Dawley rats (15/sex/group) were exposed to butyl propionate via whole-body inhalation for 6 h/day, 5 days/week (Banton et al., 2000; Ulrich et al., 2000). The treatment groups consisted of sham-exposed control (filtered air), 1331.19 mg/m³, 3993.56 mg/m³, and 7987.12 mg/m³. All the animals were subjected to complete necropsy, including microscopic examination of lungs, nasal tissues, and trachea. Nasal tissues were microscopically evaluated at 6 different levels. Exposure-related effects were observed in the nasal tissues of the rats from 3993.56 mg/m³ and 7987.12 mg/m³ groups. The effects exhibited degenerative changes to the nasal cavity olfactory epithelium consisting of vacuolation, cell necrosis, and mucosal atrophy at levels 3, 4, 5, and 6. The most pronounced effects were observed at levels 3 and 4. The lowest exposure group nasal tissue microscopy was comparable to the controls and did not show any nasal cavity tissue-related degenerative effects. Minimal vacuolation was observed in the control and the lowest exposure group, which were different in appearance from the 3993.56 mg/m³ and 7987.12 mg/m³ groups and were therefore considered to be an artifact of the sub-optimal fixation of the epithelium. Based on the histopathologic observations in the nasal passages of rats exposed to control, 1331.19 mg/m³, 3993.56 mg/m³, and 7987.12 mg/m^3 , the NOAEC was identified as 1331.19 mg/m^3 .

This NOAEC expressed in mg/kg lung weight/day is:

- $(1331.19 \text{ mg/m}^3) \times (1\text{m}^3/1000\text{L}) = 1.33 \text{ mg/L}$
- Minute ventilation (MV) of 0.17 L/min for a Sprague Dawley rat × duration of exposure of 360 min per day (min/day) (according to GLP study guidelines) = 61.2 L/day
- $(1.33 \text{ mg/L}) \times (61.2 \text{ L/day}) = 81.4 \text{ mg/day}$
- (81.4 mg/day)/(0.0016 kg lung weight of rat*) = 50,875 mg/kg lung weight/day

The 95th percentile calculated exposure was reported to be 0.0054 mg/day; this value was derived from the concentration survey data in the Creme RIFM Exposure Model (Comiskey et al., 2015 and Safford, 2015). To compare this estimated exposure with the NOAEC expressed in mg/kg lung weight/day, this value is divided by 0.65 kg human lung weight (Carthew et al., 2009) to give 0.0083 mg/kg lung weight/day

resulting in a MOE of 6129518 (i.e., [50,875 mg/kg lung weight/day]/[0.0083 mg/kg lung weight/day]).

The MOE is greater than 100. Without adjustment for specific uncertainty factors related to interspecies and intraspecies variation, the material exposure by inhalation at 0.0054 mg/day is deemed to be safe under the most conservative consumer exposure scenario.

*Phalen, R.F. Inhalation Studies. Foundations and Techniques, 2 nd Ed 2009. Published by Informa Healthcare USA, Inc., New York, NY. Chapter 9, Animal Models, in section: "Comparative Physiology and Anatomy," subsection, "Comparative Airway Anatomy."

Additional References: None.

Literature Search and Risk Assessment Completed On: 08/03/18.

11.2. Environmental endpoint summary

11.2.1. Screening-level assessment

A screening-level risk assessment of methyl octanoate was performed following the RIFM Environmental Framework (Salvito et al., 2002), which provides 3 tiers of screening for aquatic risk. In Tier 1, only the material's regional VoU, its log K_{ow} , and its molecular weight are needed to estimate a conservative risk quotient (RQ), expressed as the ratio Predicted Environmental Concentration/Predicted No Effect Concentration (PEC/PNEC). A general QSAR with a high uncertainty factor applied is used to predict fish toxicity, as discussed in Salvito et al. (2002). In Tier 2, the RQ is refined by applying a lower uncertainty factor to the PNEC using the ECOSAR model (US EPA, 2012b), which provides chemical class-specific ecotoxicity estimates. Finally, if necessary, Tier 3 is conducted using measured biodegradation and ecotoxicity data to refine the RQ, thus allowing for lower PNEC uncertainty factors. The data for calculating the PEC and PNEC for this safety assessment are provided in the table below. For the PEC, the range from the most recent IFRA Volume of Use Survey is reviewed. The PEC is then calculated using the actual regional tonnage, not the extremes of the range. Following the RIFM Environmental Framework, methyl octanoate was identified as a fragrance material with no potential to present a possible risk to the aquatic environment (i.e., its screening-level PEC/PNEC is <

A screening-level hazard assessment using EPI Suite v4.11 (US EPA, 2012a) did not identify methyl octanoate as possibly persistent or bioaccumulative based on its structure and physical-chemical properties. This screening-level hazard assessment considers the potential for a material to be persistent and bioaccumulative and toxic, or very persistent and very bioaccumulative as defined in the Criteria Document (Api, 2015). As noted in the Criteria Document, the screening criteria applied are the same as those used in the EU for REACH (ECHA, 2012). For persistence, if the EPI Suite model BIOWIN 3 predicts a value < 2.2 and either BIOWIN 2 or BIOWIN 6 predicts a value < 0.5, then the material is considered potentially persistent. A material would be considered potentially bioaccumulative if the EPI Suite model BCFBAF predicts a fish BCF ≥2000 L/kg. Ecotoxicity is determined in the above screening-level risk assessment. If, based on these model outputs (Step 1), additional assessment is required, a WoE-based review is then performed (Step 2). This review considers available data on the material's physical-chemical properties, environmental fate (e.g., OECD Guideline biodegradation studies or die-away studies), fish bioaccumulation, and higher-tier model outputs (e.g., US EPA's BIOWIN and BCFBAF found in EPI Suite v4.11).

11.2.2. Risk assessment

Based on the current Volume of Use (2015), methyl octanoate presents no risk to the aquatic compartment in the screening-level assessment.

11.2.2.1. Key studies

11.2.2.1.1. Biodegradation. No data available.

11.2.2.1.2. Ecotoxicity. No data available.

11.2.2.1.3. Other available data. Methyl octanoate has been registered for REACH, and the following additional information is available at this time (ECHA, 2011):

The *Daphnia magna* reproduction test was conducted according to the OECD 211 guidelines under semi-static conditions. The 21-day NOEC value based on the initial measured concentration was reported to be $1.8 \, \text{mg/L}$.

11.2.3. Risk assessment refinement

Ecotoxicological data and PNEC derivation (all endpoints reported in mg/L; PNECs in μ g/L).

Endpoints used to calculate PNEC are underlined.

12. Literature Search*

- RIFM Database: Target, Fragrance Structure-Activity Group materials, other references, JECFA, CIR, SIDS
- ECHA: https://echa.europa.eu/
- NTP: https://ntp.niehs.nih.gov/
- OECD Toolbox: https://www.oecd.org/chemicalsafety/risk-assess ment/oecd-qsar-toolbox.htm
- SciFinder: https://scifinder.cas.org/scifinder/view/scifinder/scifinderExplore.jsf
- PubMed: https://www.ncbi.nlm.nih.gov/pubmed
- National Library of Medicine's Toxicology Information Services: https://toxnet.nlm.nih.gov/
- IARC: https://monographs.iarc.fr
- OECD SIDS: https://hpvchemicals.oecd.org/ui/Default.aspx
- EPA ACToR: https://actor.epa.gov/actor/home.xhtml
- US EPA HPVIS: https://ofmpub.epa.gov/oppthpv/public_search.publicdetails?submission_id=24959241&ShowComments=Yes &sqlstr=null&recordcount=0&User_title=DetailQuery%20Results &EndPointRpt=Y#submission
- Japanese NITE: https://www.nite.go.jp/en/chem/chrip/chrip sear

	LC50 (Fish)	EC50	EC50	AF	PNEC (μg/L)	Chemical Class
	(mg/L)	(Daphnia)	(Algae)			
		(mg/L)	(mg/L)			
RIFM Framework						
Screening-level (Tier	<u>15.16</u>			1000000	0.01516	
1)						
			/ \			

Exposure information and PEC calculation (following RIFM Environmental Framework: Salvito, 2002).

Exposure	Europe (EU)	North America (NA)
Log K _{ow} Used	3.32	3.32
Biodegradation Factor Used	0	0
Dilution Factor	3	3
Regional Volume of Use Tonnage Band	<1	<1
Risk Characterization: PEC/PNEC	<1	<1

Based on available data, the RQ for this material is < 1. No further assessment is necessary.

The RIFM PNEC is $0.01516~\mu g/L$. The revised PEC/PNECs for EU and NA are not applicable. The material was cleared at the screening-level; therefore, it does not present a risk to the aquatic environment at the current reported VoU.

Literature Search and Risk Assessment Completed On: 12/09/

ch/systemTop

- Japan Existing Chemical Data Base (JECDB): http://dra4.nihs.go. jp/mhlw_data/jsp/SearchPageENG.jsp
- Google: https://www.google.com
- ChemIDplus: https://chem.nlm.nih.gov/chemidplus/

Search keywords: CAS number and/or material names.

*Information sources outside of RIFM's database are noted as appropriate in the safety assessment. This is not an exhaustive list. The links listed above were active as of 04/17/21.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome. RIFM staff are employees of the Research Institute for Fragrance Materials, Inc. (RIFM). The Expert Panel receives a small honorarium for time spent reviewing the subject work.

Appendix F. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.fct.2021.112362.

Appendix

Read-across Justification

Methods

The read-across analogs were identified using RIFM fragrance materials chemical inventory clustering and read-across search criteria (RIFM, 2020a). These criteria follow the strategy for structuring and reporting a read-across prediction of toxicity as described in Schultz et al. (2015) and are consistent with the guidance provided by OECD within Integrated Approaches for Testing and Assessment (OECD, 2015) and the European Chemical Agency read-across assessment framework (ECHA, 2017b).

- First, materials were clustered based on their structural similarity. Second, data availability and data quality on the selected cluster were examined. Third, appropriate read-across analogs from the cluster were confirmed by expert judgment.
- Tanimoto structure similarity scores were calculated using FCFC4 fingerprints (Rogers and Hahn, 2010).
- The physical-chemical properties of the target material and the read-across analogs were calculated using EPI Suite v4.11 (US EPA, 2012a).
- J_{max} values were calculated using RIFM's Skin Absorption Model (SAM). The parameters were calculated using the consensus model (Shen et al., 2014).
- DNA binding, mutagenicity, genotoxicity alerts, oncologic classification, ER binding, and repeat dose categorization predictions were generated using OECD QSAR Toolbox v4.2 (OECD, 2018).
- Developmental toxicity was predicted using CAESAR v2.1.7 (Cassano et al., 2010).
- Protein binding was predicted using OECD QSAR Toolbox v4.2 (OECD, 2018), and skin sensitization was predicted using Toxtree.
- The major metabolites for the target material and read-across analogs were determined and evaluated using OECD QSAR Toolbox v4.2 (OECD, 2018).
- To keep continuity and compatibility with in silico alerts, OECD QSAR Toolbox v4.2 was selected as the alert system.

	Target Material	Read-across Material		
Principal Name	Methyl octanoate	Methyl valerate	Ethyl hexanoate	Butyl propionate
CAS No.	111-11-5	624-24-8	123-66-0	590-01-2
Structure	H,C O OH1	H,C OH;	H,C O CH,	H.C. CH,
Similarity (Tanimoto Score)		0.78	0.8	0.65
Read-across Endpoint		Genotoxicity	Repeated dose toxicityReproductive toxicity	 Respiratory toxicity
Molecular Formula	C ₉ H ₁₈ O ₂	$C_6H_{12}O_2$	C ₈ H ₁₆ O ₂	C ₇ H ₁₄ O ₂
Molecular Weight	158.24	116.16	144.21	130.19
Melting Point (°C, EPI Suite)	-20.94	-56.83	-32.64	-44.60
Boiling Point (°C, EPI Suite)	190.83	125.79	170.05	148.37
Vapor Pressure (Pa @ 25°C, EPI Suite)	68.4	1.5E+003	240	620
Log K _{ow} (KOWWIN v1.68 in EPI Suite)	3.32	1.96	2.83	2.34
Water Solubility (mg/L, @ 25°C, WSKOW v1.42 in EPI Suite)	64.4	5060	629	925.9
J_{max} (mg/cm ² /h, SAM)	5.586	235.510	36.394	59.9
Henry's Law (Pa·m³/mol, Bond Method, EPI Suite) Genotoxicity	9.73E+001	4.16E+001	7.33E+001	5.52E+001
DNA Binding (OASIS v1.4, QSAR Toolbox v4.2)		 No alert found 		
DNA Binding (OECD QSAR Toolbox v4.2)		 No alert found 		
Carcinogenicity (ISS)		 Non-carcinogen (low reliability) 		
DNA Binding (Ames, MN, CA, OASIS v1.1)		 No alert found 		
In Vitro Mutagenicity (Ames, ISS)		 No alert found 		
In Vivo Mutagenicity (Micronucleus, ISS)		 No alert found 		
Oncologic Classification		 Not classified 		
Repeated Dose (HESS)			 Urethane (Renal toxicity) Alert 	
Developmental and reproductive toxicity				
ER Binding (OECD QSAR Toolbox v4.2)			 Non-binder, non-cyclic structure 	
Developmental Toxicity (CAESAR v2.1.6)			 Toxicant (good reliability) 	
Local respiratory toxicity				
Respiratory Sensitization (OECD QSAR Toolbox v4.2)				 No alert found
Rat Liver S9 Metabolism Simulator and Structural Alerts for Metabolites (OECD QSAR Toolbox v4.2)	See Supplemental Data 1	See Supplemental Data 2	See Supplemental Data 3	See Supplemental Data 4

Summary

There are insufficient toxicity data on methyl octanoate (CAS # 111-11-5). Hence, in silico evaluation was conducted to determine read-across analogs for this material. Based on structural similarity, reactivity, physical-chemical properties, and expert judgment, methyl valerate (CAS #

624-24-8), ethyl hexanoate (CAS # 123-66-0), and butyl propionate (CAS # 590-01-2) were identified as read-across materials with sufficient data for toxicological evaluation.

Conclusions

- Methyl valerate (CAS # 624-24-8) was used as a read-across analog for the target material methyl octanoate (CAS # 111-11-5) for the genotoxicity endpoint.
 - o The target material and the read-across analog are structurally similar and belong to a class of saturated aliphatic esters.
 - o The key difference between the target material and the read-across analog is that the target material is a hexanoate ester, whereas the read-across analog is a valerate ester. The read-across analog contains the structural features of the target material that are relevant to this endpoint and is expected to have equal or greater potential for toxicity as compared to the target material.
 - o The similarity between the target material and the read-across analog is indicated by the Tanimoto score. Differences between the structures that affect the Tanimoto score are toxicologically insignificant.
 - o The physical-chemical properties of the target material and the read-across analog are sufficiently similar to enable comparison of their toxicological properties.
 - o According to the OECD QSAR Toolbox v4.2, structural alerts for toxicological endpoints are consistent between the target material and the read-across analog.
 - o The target material and the read-across analog do not have alerts of toxicity. Data are consistent with the in silico alerts.
 - o The target material and the read-across analog are expected to be metabolized similarly, as shown by the metabolism simulator.
 - o The structural alerts for the endpoints evaluated are consistent between the metabolites of the read-across analog and the target material.
- Ethyl hexanoate (CAS # 123-66-0) was used as a read-across analog for the target material methyl octanoate (CAS # 111-11-5) for the repeated dose and reproductive toxicity endpoints.
 - o The target material and the read-across analog are structurally similar and belong to a class of saturated aliphatic esters.
 - o The key difference between the target material and the read-across analog is that the target material is a methyl ester, whereas the read-across analog is an ethyl ester. The read-across analog contains the structural features of the target material that are relevant to this endpoint and is expected to have equal or greater potential for toxicity as compared to the target material.
 - o The similarity between the target material and the read-across analog is indicated by the Tanimoto score. Differences between the structures that affect the Tanimoto score are toxicologically insignificant.
 - o The physical-chemical properties of the target material and the read-across analog are sufficiently similar to enable comparison of their toxicological properties.
 - According to the OECD QSAR Toolbox v4.2, structural alerts for toxicological endpoints are consistent between the target material and the readacross analog.
 - o The target material and the read-across analog do not have alerts of toxicity. Data are consistent with in silico alerts.
 - o The target material and the read-across analog are expected to be metabolized similarly, as shown by the metabolism simulator.
 - o The structural alerts for the endpoints evaluated are consistent between the metabolites of the read-across analog and the target material.
- Butyl propionate (CAS # 590-01-2)) was used as a read-across analog for the target material methyl octanoate (CAS # 111-11-5) for the local respiratory endpoint.
 - o The target material and the read-across analog are structurally similar and belong to a class of saturated aliphatic esters.
 - o The key difference between the target material and the read-across analog is that the target is an octanoate methyl ester, whereas the read-across analog is a propionate butyl ester. The read-across analog contains the structural features of the target material that are relevant to this endpoint and is expected to have equal or greater potential for toxicity as compared to the target material.
 - o The similarity between the target material and the read-across analog is indicated by the Tanimoto score. Differences between the structures that affect the Tanimoto score are toxicologically insignificant.
 - o The physical-chemical properties of the target material and the read-across analog are sufficiently similar to enable comparison of their toxicological properties.
 - o According to the OECD QSAR Toolbox v4.2, structural alerts for toxicological endpoints are consistent between the target material and the read-across analog.
 - o The target material and the read-across analog do not have alerts of toxicity. The data described in the skin sensitization section confirm that the read-across analog is a weak sensitizer. The *in silico* alerts are inconsistent with data and are superseded by the data for skin sensitization.
 - o The target material and the read-across analog are expected to be metabolized similarly, as shown by the metabolism simulator.
 - o The structural alerts for the endpoints evaluated are consistent between the metabolites of the read-across analog and the target material.
 - o The structural alerts for the endpoints evaluated are consistent between the metabolites of the read-across analog and the target material.

References

- Alfin-Slater, R.B., Morris, R.S., Hansen, H., Proctor, J.F., 1965. Effects of non-essential fatty acids on essential fatty-acid deficiency. J. Nutr. 87 (2), 168–171.
- Api, A.M., Belsito, D., Bruze, M., Cadby, P., Calow, P., Dagli, M.L., Dekant, W., Ellis, G., Fryer, A.D., Fukayama, M., Griem, P., Hickey, C., Kromidas, L., Lalko, J.F., Liebler, D.C., Miyachi, Y., Politano, V.T., Renskers, K., Ritacco, G., Salvito, D., Schultz, T.W., Sipes, I.G., Smith, B., Vitale, D., Wilcox, D.K., 2015. Criteria for the Research Institute for fragrance materials, Inc. (RIFM) safety evaluation process for fragrance ingredients. Food Chem. Toxicol. 82, S1–S19.
- Arctander, S., 1969. Perfume and Flavor Chemicals (Aroma Chemicals), vols. I and II. Published by the author: Montclair, NJ (USA).
- Banton, M.I., Tyler, T.R., Ulrich, C.E., Nemec, M.D., Garman, R.H., 2000. Subchronic and developmental toxicity studies of n-butyl propionate vapor in rats. J. Toxicol. Environ. Health, Part A. 61 (2), 79–105.
- Bar, V.F., Griepentrog, F., 1967. Die Situation in der gesundheitlichen Beurteilung der Aromatisierungsmittel Fur Lebensmittel. (Where we stand concerning the evaluation of flavoring substances from the viewpoint of health). Medizin Ernahr 8, 244–251.
- Carthew, P., Clapp, C., Gutsell, S., 2009. Exposure based waiving: the application of the toxicological threshold of concern (TTC) to inhalation exposure for aerosol ingredients in consumer products. Food Chem. Toxicol. 47 (6), 1287–1295.
- Cassano, A., Manganaro, A., Martin, T., Young, D., Piclin, N., Pintore, M., Benfenati, E., 2010, July. CAESAR models for developmental toxicity. Chem. Cent. J. 4 (S1), S4. Springer International Publishing.
- Comiskey, D., Api, A.M., Barratt, C., Daly, E.J., Ellis, G., McNamara, C., O'Mahony, C., Robison, S.H., Safford, B., Smith, B., Tozer, S., 2015. Novel database for exposure to fragrance ingredients in cosmetics and personal care products. Regul. Toxicol. Pharmacol. 72 (3). 660–672.
- Comiskey, D., Api, A.M., Barrett, C., Ellis, G., McNamara, C., O'Mahony, C., Robison, S. H., Rose, J., Safford, B., Smith, B., Tozer, S., 2017. Integrating habits and practices

- data for soaps, cosmetics and air care products into an existing aggregate exposure model. Regul. Toxicol. Pharmacol. 88, 144–156.
- ECHA, 2011. Methyl octanoate registration dossier. Retrieved from. https://echa.europa.eu/registration-dossier/-/registered-dossier/15958.
- ECHA, 2012. Guidance on information requirements and chemical safety assessment Chapter R.11: PBT Assessment, November 2012 v1.1. http://echa.europa.eu/.
- ECHA, 2017a. Ethyl hexanoate registration dossier. Retrieved from. https://echa.europa.eu/registration-dossier/-/registered-dossier/21457/1.
- ECHA, 2017b. Read-across assessment framework (RAAF). Retrieved from. https://echa.europa.eu/documents/10162/13628/raaf_en.pdf/614e5d61-891d-4154-8a47-87efe bd1851a.
- Henry, B., Foti, C., Alsante, K., 2009. Can light absorption and photostability data be used to assess the photosafety risks in patients for a new drug molecule? J. Photochem. Photobiol. B Biol. 96 (1), 57–62.
- IFRA International Fragrance Association, 2015. Volume of Use Survey. February 2015. Kroes, R., Renwick, A.G., Feron, V., Galli, C.L., Gibney, M., Greim, H., Guy, R.H., Lhuguenot, J.C., van de Sandt, J.J.M., 2007. Application of the threshold of toxicological concern (TTC) to the safety evaluation of cosmetic ingredients. Food Chem. Toxicol. 45 (12), 2533–2562.
- Laufersweiler, M.C., Gadagbui, B., Baskerville-Abraham, I.M., Maier, A., Willis, A., et al., 2012. Correlation of chemical structure with reproductive and developmental toxicity as it relates to the use of the threshold of toxicological concern. Regul. Toxicol. Pharmacol. 62 (1), 160–182.
- Na, M., Ritacco, G., O'Brien, D., Lavelle, M., Api, A., Basketter, D., 2020. Fragrance Skin Sensitization Evaluation and Human Testing, Dermatitis. https://doi.org/10.1097/ DER.000000000000684. November 16, 2020. Volume Publish Ahead of Print Issue. Retrieved from.
- OECD, 2015. Guidance document on the reporting of integrated Approaches to testing and assessment (IATA). ENV/JM/HA(2015)7. Retrieved from. http://www.oecd.org/.
- OECD, 2018. The OECD QSAR Toolbox, v3.2–v4.2. http://www.qsartoolbox.org/.
 RIFM Research Institute for Fragrance Materials, Inc, 2002. Methyl Octanoate: Murine
 Lymph Node Assay. RIFM, Woodcliff Lake, NJ, USA. Unpublished report from
 Firmenich SA. RIFM report number 42131.
- RIFM Research Institute for Fragrance Materials, Inc, 2013. Report on the Testing of Methyl Octanoate in the BlueScreen HC Assay (-/+ S9 Metabolic Activation). RIFM, Woodcliff Lake, NJ, USA. RIFM report number 66257.
- RIFM Research Institute for Fragrance Materials, Inc, 2016a. Methyl Valerate: in Vitro Mammalian Cell Micronucleus Assay in Human Peripheral Blood Lymphocytes (HPBL). RIFM, Woodcliff Lake, NJ, USA. RIFM report number 69824.
- RIFM Research Institute for Fragrance Materials, Inc, 2016b. Methyl Valerate: Bacterial Reverse Mutation Assay. RIFM, Woodcliff Lake, NJ, USA. RIFM report number 69825
- RIFM Research Institute for Fragrance Materials, Inc, 2017. Ethyl Hexanoate
 (Ethylcapronat): Combined Repeated Dose Oral Gavage Toxicity Study with the

- Reproduction/developmental Toxicity Screening in Sprague-Dawley Rats. RIFM, Woodcliff Lake, NJ, USA. Unpublished report from RIFM report number 72645.
- RIFM Research Institute for Fragrance Materials, Inc, 2018. Methyl Octanoate: Repeated Insult Patch Test (RIPT). RIFM Report Number 73322. RIFM, Woodcliff Lake, NJ, 11SA
- RIFM Research Institute for Fragrance Materials, Inc, 2019. Exposure Survey, 23, January 2019.
- RIFM Research Institute for Fragrance Materials, Inc, 2020a. Clustering a Chemical Inventory for Safety Assessment of Fragrance Ingredients: Identifying Read-Across Analogs to Address Data Gaps. RIFM, Woodcliff Lake, NJ, USA. RIFM report number 76272.
- RIFM Research Institute for Fragrance Materials, Inc, 2020b. Updating Exposure Assessment for Skin Sensitization Quantitative Risk Assessment for Fragrance Materials. RIFM, Woodcliff Lake, NJ, USA. RIFM report number 76775.
- Roberts, D.W., Patlewicz, G., Kern, P.S., Gerberick, F., Kimber, I., Dearman, R.J., Ryan, C. A., Basketter, D.A., Aptula, A.O., 2007. Mechanistic applicability domain classification of a local lymph node assay dataset for skin sensitization. Chem. Res. Toxicol. 20 (7), 1019–1030.
- Rogers, D., Hahn, M., 2010. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50 (5), 742–754.
- Safford, B., Api, A.M., Barratt, C., Comiskey, D., Daly, E.J., Ellis, G., McNamara, C., O'Mahony, C., Robison, S., Smith, B., Thomas, R., Tozer, S., 2015. Use of an aggregate exposure model to estimate consumer exposure to fragrance ingredients in personal care and cosmetic products. Regul. Toxicol. Pharmacol. 72, 673–682.
- Safford, B., Api, A.M., Barratt, C., Comiskey, D., Ellis, G., McNamara, C., O'Mahony, C., Robison, S., Rose, J., Smith, B., Tozer, S., 2017. Application of the expanded Creme RIFM consumer exposure model to fragrance ingredients in cosmetic, personal care and air care products. Regul. Toxicol. Pharmacol. 86, 148–156.
- Salvito, D.T., Senna, R.J., Federle, T.W., 2002. A Framework for prioritizing fragrance materials for aquatic risk assessment. Environ. Toxicol. Chem. 21 (6), 1301–1308.
- Schultz, T.W., Amcoff, P., Berggren, E., Gautier, F., Klaric, M., Knight, D.J., Cronin, M.T. D., 2015. A strategy for structuring and reporting a read-across prediction of toxicity. Regul. Toxicol. Pharmacol. 72 (3), 586–601.
- Shen, J., Kromidas, L., Schultz, T., Bhatia, S., 2014. An in silico skin absorption model for fragrance materials. Food Chem. Toxicol. 74 (12), 164–176.
- Ulrich, C.E., Nemec, M.D., Banton, M.I., Tyler, T.R., Garmon, R.H., 2000. Subchronic and developmental toxicity studies of n-butyl propionate vapor in rats. Toxicologist 54 (1), 292.
- US EPA, 2012a. Estimation Programs Interface Suite for Microsoft Windows, v4.0–v4.11.
 United States Environmental Protection Agency, Washington, DC, USA.
- US EPA, 2012b. The ECOSAR (ECOlogical Structure Activity Relationship) Class Program for Microsoft Windows, v1.11. United States Environmental Protection Agency, Washington, DC, USA.