Contents lists available at ScienceDirect

Food and Chemical Toxicology

journal homepage: www.elsevier.com/locate/foodchemtox

RIFM fragrance ingredient safety assessment, l-Borneol, CAS registry number 464-45-9

A.M. Api^a, D. Belsito^b, S. Bhatia^a, M. Bruze^c, P. Calow^d, M.L. Dagli^e, W. Dekant^f, A.D. Fryer^g, L. Kromidas^{a,*}, S. La Cava^a, J.F. Lalko^a, A. Lapczynski^a, D.C. Liebler^h, Y. Miyachiⁱ, V.T. Politano^a, G. Ritacco^a, D. Salvito^a, J. Shen^a, T.W. Schultz^j, I.G. Sipes^k, B. Wall^a, D.K. Wilcox^a

^a Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA

^b Member RIFM Expert Panel, Department of Dermatology, Columbia University Medical Center, 161 Fort Washington Ave., New York, NY 10032, USA

^c Member RIFM Expert Panel, Department of Occupational & Environmental Dermatology, Malmo University Hospital, Sodra Forstadsgatan 101, Entrance 47, Malmo SE-20502, Sweden

^d Member RIFM Expert Panel, 230 Whittier Research Center, University of Nebraska Lincoln, Lincoln, NE 68583-0857, USA

^e Member RIFM Expert Panel, School of Veterinary Medicine and Animal Science, Department of Pathology, University of Sao Paulo, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo CEP 05508-900, Brazil

^f Member RIFM Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, Würzburg 97078, Germany

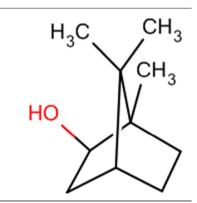
^g Member RIFM Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA

^h Member RIFM Expert Panel, Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt University School of Medicine, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN 37232-0146, USA

¹ Member RIFM Expert Panel, Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan

³ Member RIFM Expert Panel, College of Veterinary Medicine, Department of Comparative Medicine, The University of Tennessee, 2407 River Dr., Knoxville, TN 37996-4500, USA

^k Member RIFM Expert Panel, Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA


ARTICLE INFO

Article history: Received 13 February 2015 Accepted 4 April 2015 Available online 16 April 2015

Version: 011414. This version replaces any previous versions.

Name: l-Borneol CAS Registry Number: 464-45-9

E-mail address: lkromidas@rifm.org (L. Kromidas).

^{*} Corresponding author. Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677 USA. Tel.: +1 201 689 8089 ext 110; fax: (201) 689 8090.

Abbreviation/Definition list:

2-Box Model - a RIFM, Inc. proprietary in silico tool used to calculate fragrance air exposure concentration

- 97.5th percentile The concentration of the fragrance ingredient is obtained from examination of several thousand commercial fine fragrance formulations. The upper 97.5 percentile concentration is calculated from these data and is then used to estimate the dermal systemic exposure in ten types of the most frequently used personal care and cosmetic products. The dermal route is the major route in assessing the safety of fragrance ingredients. Further explanation of how the data were obtained and of how exposures were determined has been previously reported by Cadby et al. (2002) and Ford et al. (2000).
- AF Assessment Factor

DEREK - Derek nexus is an in silico tool to predict whether a chemical will be toxic

- DST Dermal Sensitization Threshold
- ECHA European Chemicals Agency
- GLP Good Laboratory Practice

IFRA - The International Fragrance Association

- LOEL Lowest Observable Effect Level
- MOE Margin of Exposure

MPPD - Multiple-Path Particle Dosimetry. An in silico model for inhaled vapors used to simulate fragrance lung deposition

- NESIL No Expected Sensitization Induction Level
- NOAEC No Observed Adverse Effect Concentration
- NOAEL No Observed Adverse Effect Level
- NOEC No Observed Effect Concentration
- OECD Organisation for Economic Co-operation and Development

OECD TG - Organisation for Economic Co-operation and Development Testing Guidelines

PBT - Persistent, Bioaccumulative, and Toxic

PEC/PNEC – Predicted Environmental Concentration/Predicted No Effect Concentration

- ORA quantitative risk assessment
- REACH Registration, Evaluation, Authorisation, and Restriction of Chemicals

RIFM - Research Institute for Fragrance Materials

RO – Risk Quotient

TTC - Threshold of Toxicological Concern

UV/Vis Spectra - Ultra Violet/Visible spectra

VCF - Volatile Compounds in Food

VoU - Volume of Use

vPvB – (very) Persistent, (very) Bioaccumulative

RIFM's Expert Panel* concludes that this material is safe under the limits described in this safety assessment.

This safety assessment is based on RIFM's Criteria Document (Api et al., 2014) and should be referred to for clarifications.

- Each endpoint discussed in this safety assessment reviews the relevant data that were available at the time of writing (version number in the top box is indicative of the date of approval based on a two digit month/day/year), both in the RIFM database (consisting of publicly available and proprietary data) and through publicly available information sources (i.e., SciFinder and PubMed). Studies selected for this safety assessment were based on appropriate test criteria, such as acceptable guidelines, sample size, study duration, route of exposure, relevant animal species, most relevant testing endpoints, etc. A key study for each endpoint was selected based on the most conservative end-point value (e.g., PNEC, NOAEL, LOEL, and NESIL).
- * RIFM's Expert Panel is an independent body that selects its own members and establishes its own operating procedures. The Expert Panel is comprised of internationally known scientists that provide RIFM guidance relevant to human health and environmental protection.

Summary: The use of this material under current use conditions is supported by the existing information.

This material was evaluated for Genotoxicity, Repeated Dose Toxicity, Developmental Toxicity, Reproductive Toxicity, Local Respiratory Toxicity, Phototoxicity, Skin Sensitization potential as well as Environmental assessment. Repeated Dose Toxicity was determined using read across analog to have the most conservative systemic exposure derived NO[A]EL of 15 mg/kg/day, based on a gavage 13-week subchronic toxicity study conducted in rats, that resulted in a MOE of 3061, considering 100% absorption from skin contact and inhalation. A MOE of >100 is deemed acceptable.

Human Health Safety Assessment

Genotoxicity: Not genotoxic (RIFM (Research Institute for Fragrance Materials, Inc.), 2013; RIFM (Research Institute for Fragrance Materials, Inc.), 2013a) Repeated Dose Toxicity: NOEL = 15 mg/kg/day (Gaunt et al., 1971) Developmental and Reproductive Toxicity: NOAEL = 300 mg/kg/day (RIFM (Research Institute for Fragrance Materials, Inc.), 2011) Skin Sensitization: Not a sensitization concern. Exposure is below the DST. Phototoxicity/Photoallergenicity: Not phototoxic/photoallergenic (UV spectra, RIFM Database) Local Respiratory Toxicity: No NOAEC available. Exposure is below the TTC.

Environmental Safety Assessment

Hazard Assessment:

Persistence: Critical Measured Value: 83% (Method C.4D) (RIFM (Research Institute for Fragrance Materials, Inc.), 2000) Bioaccumulation: Screening Level: 27.66 L/kg (EPISUITE ver 4.1) Ecotoxicity: Screening Level: Daphnia LC50: 13.38 mg/l (EPISUITE ver 4.1) Conclusion: Not PBT or vPvB as per IFRA Environmental Standards **Risk Assessment:** Screening-Level: PEC/PNEC (North America and Europe) >1 (Salvito et al., 2002)

- Critical Ecotoxicity Endpoint: Daphnia LC50: 13.38 mg/l (EPISUITE ver 4.1)
- RIFM PNEC is: 1.338 µg/L
- Revised PEC/PNECs (2011 IFRA VoU): North America and Europe <1

1. Identification

- 1 Chemical Name: I-Borneol
- 2 CAS Registry Number: 464-45-9
- 3 Synonyms: Bicyclo[2.2.1]heptan-2-ol, 1,7,7-trimethyl-, (1S-endo)-, l-Borneol, l-Bornyl alcohol, l-2-Camphanol, ボルネオール及びイソボルネオール, 1,7,7-Trimethylbicyclo[2.2.1]heptan -2-ol
- 4 Molecular Formula: C₁₀H₁₈O
- 5 Molecular Weight: 154.25
- 6 RIFM Number: 325
- 2. Physical data
- **1** Boiling Point: 212 °C [FMA], (calculated) 209.98 °C [EPI Suite]
- 2 Flash Point: > 200 °F;CC [FMA]

- **3 Log K**ow: 2.85 [EPI Suite]
- 4 Melting Point: 204 [FMA], (calculated) 26.56 °C [EPI Suite]
- **5 Water Solubility:** 1186 mg/L [EPI Suite]
- 6 Specific Gravity: Not Available
- **7 Vapor Pressure:** 0.000214 mm Hg @ 20 °C [EPI Suite 4.0], 0.02 mm Hg 20 °C [FMA], 0.000429 mm Hg @ 25 °C [EPI Suite]
- **8 UV spectra:** Does not significantly absorb in the region of 290–700 nm; molar absorption coefficient is below the benchmark
- **9 Appearance/Organoleptic:** Opaque (colorless) crystals, with a dry woody, slightly camphoraceous odor.

3. Exposure

- **1. Volume of Use (worldwide band):** 10 to 100 metric tons per year (IFRA (International Fragrance Association), 2011)
- **2.** Average Maximum Concentration in Hydroalcoholics: 0.05% (IFRA (International Fragrance Association), 2011)
- **3. 97.5th Percentile:** 0.18% (IFRA (International Fragrance Association), 2004)
- **4. Dermal Exposure*:** 0.0046 mg/kg/day (IFRA (International Fragrance Association), 2004)
- 5. Oral Exposure: Not available
- **6. Inhalation Exposures**:** 0.00028 mg/kg/day (IFRA (International Fragrance Association), 2004)
- **7. Total Systemic Exposure (Dermal + Inhalation):** 0.0049 mg/kg/day

* Calculated using the reported 97.5th percentile concentration based on the levels of the same fragrance ingredient in ten of the most frequently used personal care and cosmetic products (i.e., antiperspirant, bath products, body lotion, eau de toilette, face cream, fragrance cream, hair spray, shampoo, shower gel, and toilet soap). (Cadby et al., 2002; Ford et al., 2000).

** Combined (fine fragrances, hair sprays, antiperspirants/ deodorants, candles, aerosol air fresheners, and reed diffusers/ heated oil plug-ins) result calculated using RIFM's 2-Box/MPPD *in silico* models, based on the IFRA survey results for the 97.5th percentile use in hydroalcoholics for a 60 kg individual.

4. Derivation of systemic absorption

- 1 Dermal: Assumed 100%
- 2 Oral: Data not available not considered.
- 3 Inhalation: Assumed 100%
- **4 Total:** Since data not available, assume Dermal + Inhalation exposure is 100% absorbed = 0.0049 mg/kg/day

5. Computational toxicology evaluation

1 Cramer Classification: Class I, Low (Expert Judgment)

Expert	Toxtree	OECD QSAR
Judgment	v.2.6	Toolbox v.3.1
I*	II	II

* See Appendix below for explanation.

2 Analogues Selected:

- a. Genotoxicity: None
- b. Repeated Dose Toxicity: Isobornyl acetate (CAS # 125-12-2)
- **c. Developmental and Reproductive Toxicity:** Isobornyl acetate (CAS # 125-12-2)
- d. Skin Sensitization: None
- e. Phototoxicity/Photoallergenicity: None
- f. Local Respiratory Toxicity: None
- g. Environmental Toxicity: None
- 3. Read-across Justification: See Appendix below

6. Metabolism

Not considered for this risk assessment and therefore not reviewed except where it may pertain in specific endpoint sections as discussed below.

7. Natural occurrence (discrete chemical) or composition (NCS)

I-Borneol is not reported to occur in food by the VCF database.* *VCF Volatile Compounds in Food: database / Nijssen, L.M.; Ingen-Visscher, C.A. van; Donders, J.J.H. [eds]. – Version 15.1 – Zeist (The Netherlands): TNO Triskelion, 1963–2014. A continually updated database, contains information on published volatile compounds which have been found in natural (processed) food products. Includes FEMA GRAS and EU-Flavis data.

8. IFRA standard: none

None.

9. REACH Dossier: pre-registered for 2010; No dossier available as of 01/22/15.

No dossier available as of 01/22/15.

10. Summary

10.1. Human health endpoint summaries

10.1.1. Genotoxicity

Based on the current existing data and use levels, l-Borneol does not present a concern for genetic toxicity.

10.1.1.1. *Risk assessment. I*-Borneol was assessed for genotoxic potential in the Bluescreen assay and was found to be genotoxic in the presence of metabolic activation (S9 mix) (RIFM (Research Institute for Fragrance Materials, Inc.), 2013b).

The mutagenic potential of *l*-borneol was assessed in a GLP compliant study in accordance with OECD TG 471 using the plate incorporation method. *Salmonella typhimurium* strains TA1535, TA1537, TA98, TA102, and TA100 and *Escherichia coli* strain WP2uvrA were treated with *l*-borneol in DMSO at concentrations up to 1000 μ g/plate in the presence and absence of metabolic activation (S9 mix; RIFM (Research Institute for Fragrance Materials, Inc.), 2013). Under the conditions of the study, *l*-borneol is considered not mutagenic in bacteria.

The clastogenic potential of *l*-Borneol was further assessed in a GLP compliant *in vitro* micronucleus study in accordance with OECD TG 487. Human peripheral blood lymphocytes were exposed to varying concentrations of *l*-borneol in DMSO up to $600 \mu g/ml$ for 4 hr with and without metabolic activation and 24 hr without metabolic activation. Under the conditions of the study, *l*-borneol was considered non-clastogenic (RIFM (Research Institute for Fragrance Materials, Inc.), 2013a). Taken together, *l*-borneol does not present a concern for genotoxic potential.

Based on the available data, *l*-borneol does not present a concern for genotoxic potential.

Additional References: None

Literature Search and Risk Assessment Completed on: 11/15/13

10.1.2. Repeated dose toxicity

The margin of exposure for l-Borneol is adequate for the repeated dose toxicity endpoint at the current level of use. 10.1.2.1. *Risk assessment*. There are no repeated dose toxicity data on *l*-borneol. Read across material isobornyl acetate (CAS # 125-12-2; see Section V) has a gavage 13-week subchronic toxicity study that was conducted in rats. The NOEL was determined to be 15 mg/ kg/day, based on increased urinary cell excretion (Gaunt et al., 1971). **Therefore, the MOE is equal to the isobornyl acetate NOEL in mg/** kg/day divided by the total systemic exposure, 15/0.0049 or 3061.

Additional References: Bhatia et al., 2008; Belsito et al., 2008; Antoine et al., 1984; Green et al., 1996; Quick, 1927; Pryde et al., 1934; Robertson et al., 1969; Boutin et al., 1981; Boutin et al., 1983; Bhatia et al., 2008a; Wu et al., 2005; Buchbauer et al., 1993; Wagreich et al., 1941; Quick, 1928; Boutin et al., 1985; Tamura et al., 1962; Leibman et al., 1973; Lehman-McKeeman et al., 1999; Leclerc et al., 2002; Boutin et al., 1984; Pinching et al., 1974; Schafer and Schafer, 1982

Literature Search and Risk Assessment Completed on: 11/15/13

10.1.3. Developmental and reproductive toxicity

The margin of exposure for l-Borneol is adequate for the developmental and reproductive toxicity endpoints at the current level of use.

10.1.3.1. *Risk assessment*. There are no developmental toxicity data on *l*-borneol. Read across material isobornyl acetate (CAS # 125-12-2; see Section V) has an OECD 414 gavage developmental toxicity limit dose study that was conducted in rats. The NOAEL was determined to be 1000 mg/kg/day, the only dosage tested (ECHA REACH Dossier: exo-1,7,7-Trimethylbicyclo[2.2.1]hept-2-yl acetate, 2015 Exp Key Developmental toxicity / teratogenicity.001, accessed 08/12/ 13). Therefore, the MOE for developmental toxicity is equal to the isobornyl acetate NOAEL in mg/kg/day divided by the total systemic exposure, 1000/0.0049 or 204082.

There are no reproductive toxicity data on *l*-borneol. Read across material isobornyl acetate (CAS # 125-12-2) has an enhanced OECD 415 gavage 1-generation reproductive toxicity study that was conducted in rats. The NOAEL for reproductive toxicity in the parental generation was determined to be 300 mg/kg/day, the highest dosage tested (RIFM (Research Institute for Fragrance Materials, Inc.), 2011). Therefore, the MOE for reproductive toxicity is equal to the isobornyl acetate NOAEL in mg/kg/day divided by the total systemic exposure, 300/0.0049 or 61224.

Additional References: Bhatia et al., 2008; Belsito et al., 2008; Antoine et al., 1984; Green et al., 1996; Quick, 1927; Pryde et al., 1934; Robertson et al., 1969; Boutin et al., 1981; Boutin et al., 1983; Bhatia et al., 2008a; Wu et al., 2005; Buchbauer et al., 1993; Wagreich et al., 1941; Quick, 1928; Boutin et al., 1985; Tamura et al., 1962; Leibman et al., 1973; Lehman-McKeeman et al., 1999; Leclerc et al., 2002; Boutin et al., 1984; Pinching et al., 1974; Schafer and, Schafer 1982

Literature Search and Risk Assessment Completed on: 11/15/13

10.1.4. Skin sensitization

Based on the available data and application of the non-reactive DST, I-Borneol does not present a concern for skin sensitization.

10.1.4.1. *Risk assessment.* The chemical structure of this material indicates that it would not be expected to react directly with skin proteins (Roberts et al., 2007; Toxtree 2.5.0; OECD toolbox v3.1). In the human maximization test, two reactions were observed in a Panel of 25 subjects; however these were considered questionable due to the presence of concurrent test materials for which numerous strong reactions were observed (RIFM (Research Institute for Fragrance Materials, Inc.), 1972). The human maximization test was repeated, utilizing the same concentration; no reactions (0/25) indicative of sensitization were observed (RIFM (Research Institute for Fragrance Materials, Inc.), 1973). In another human maximization

test, no reactions indicative of sensitization were observed with 8% I-borneol in petrolatum (RIFM (Research Institute for Fragrance Materials, Inc.), 1972). Finally, as there are no predictive tests available in animal models, the dermal exposure to I-borneol was benchmarked utilizing the non-reactive DST. The current dermal exposure from hydroalcoholic products, 0.05%, is below the DST for non-reactive materials when evaluated in QRA categories 3 and 4 (DST levels of 0.14% and 0.41%, respectively).

Based on the available data and application of the non-reactive DST, l-borneol does not present a concern for skin sensitization.

Additional References: None Literature Search and Risk Assessment Completed on: 11/15/13

10.1.5. Phototoxicity/Photoallergenicity

Based on the available UV absorption spectra, l-borneol does not present a concern for phototoxicity or photoallergenicity.

10.1.5.1. *Risk assessment*. The available UV absorption spectrum for *l*-borneol demonstrates that this material does not significantly absorb in the region of 290–700 nm. The molar absorption coefficient at all wavelengths between 290 and 700 nm is well below the benchmark (1000 L mol-1 cm-1) considered to be of concern for phototoxic effects (Henry et al., 2009). Based on the available UV spectra, *l*-borneol does not present a concern for phototoxicity or photoallergenicity.

Additional References: None

Literature Search and Risk Assessment Completed on: 11/15/13

10.1.6. Local respiratory toxicity

The margin of exposure for *l*-borneol could not be calculated due to lack of appropriate data. The material, *l*-borneol, is below the exposure level for the inhalation TTC Cramer Class I limit for local effects.

10.1.6.1. *Risk assessment.* There are no inhalation data available on *l*-borneol. Based on the IFRA survey results for hydroalcoholics, the 97.5th percentile was reported to be 0.18%. If the same amount is used in all product types (fine fragrances, hair sprays, antiperspirants/ deodorants, candles, aerosol air fresheners, and reed diffusers/ heated oil plug-ins), the inhalation combined exposure would be 0.017 mg/day, as calculated by RIFM's 2-Box Model and further refined using the Multiple Path Particle Deposition Model, using the 97.5th percentile IFRA survey hydroalcoholic use value. This value is below the Cramer Class I TTC level of 1.4 mg/day (based on human lung weight of 650 g; Carthew et al., 2009) and is deemed safe for use at the reported use level

Additional References: None

Literature Search and Risk Assessment Completed on: 11/15/13

10.2. Environmental endpoint summary

10.2.1. Screening-level assessment

A screening level risk assessment of l-borneol was performed following the RIFM Environmental Framework (Salvito et al., 2002) which provides for 3 levels of screening for aquatic risk. In Tier 1, only the material's volume of use in a region, its log K_{ow} and molecular weight are needed to estimate a conservative risk quotient (RQ; Predicted Environmental Concentration/Predicted No Effect Concentration or PEC/PNEC). In Tier 1, a general QSAR for fish toxicity is used with a high uncertainty factor as discussed in Salvito et al, 2002. At Tier 2, the model ECOSAR (providing chemical class specific ecotoxicity estimates) is used and a lower uncertainty factor is applied. Finally, if needed, at Tier 3, measured biodegradation and ecotoxicity data are used to refine the RQ (again, with lower uncertainty factors applied to calculate the PNEC). Following the RIFM Environmental Framework, l-borneol was identified as a fragrance material with the potential to present a possible risk to the aquatic environment (i.e., its screening level PEC/PNEC >1).

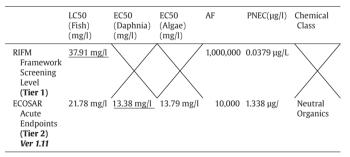
A screening-level hazard assessment using EPISUITE ver 4.1 did identify 1-borneol as being possibly persistent but not bioaccumulative based on its structure and physical-chemical properties. This screening level hazard assessment is a weight of evidence review of a material's physical-chemical properties, available data on environmental fate (e.g., OECD Guideline biodegradation studies or dieaway studies) and fish bioaccumulation, and review of model outputs (e.g., USEPA's BIOWIN and BCFBAF found in EPISUITE ver.4.1). Specific key data on biodegradation and fate and bioaccumulation are reported below and summarized in the Environmental Safety Assessment section prior to Section I.

10.2.2. Risk assessment

Based on current VoU (2011), l-borneol does present a risk to the aquatic compartment in the screening level assessment.

10.2.2.1. Biodegradation. Biodegradation was evaluated by the Manometric Respirometry Test which was conducted according to Council Directive 92/69/EEC Method C.4-D guidelines. Under conditions of this study, test material at 100 mg per liter had a biodegradation level of 59% after 10 days, 67% after 14 days, 75% after 20 days and 83% after 28 days (RIFM (Research Institute for Fragrance Materials, Inc.), 2000).

10.2.2.2. Ecotoxicity. A 48 hour Daphnia magna acute toxicity test was conducted with l-borneol according to Council Directive 92/69/EEC, Part C, Method 2. The geometric mean of ECO/EC100 was reported to be 50 mg/l (RIFM (Research Institute for Fragrance Materials, Inc.), 2000a).


10.2.3. Other available data

l-Borneol has been pre-registered for REACH with no additional data at this time.

10.2.4. Risk assessment refinement

Because l-borneol has passed the screening criteria for risk, measured data are included for completeness only and have not been used for PNEC calculations.

Endpoints used to calculate PNEC are underlined.

Exposure information and PEC calculation (following RIFM Framework: Salvito et al., 2002)

Exposure	Europe (EU)	North America (NA)
Log K _{ow} used	2.85	2.85
Biodegradation Factor Used	1	1
Dilution Factor	3	3
Regional Volume of Use Tonnage Band	10-100	1-10
Risk Characterization: PEC/PNEC	<1	<1

The RIFM PNEC is $1.338 \ \mu g/L$. The revised PEC/PNECs for EU and NA are <1 and, therefore, does not present a risk to the aquatic environment at the current reported volumes of use.

Literature Search and Risk Assessment Completed on: 11/15/13

11. Literature search*

- **RIFM database:** target, Fragrance Structure Activity Group materials, other references, JECFA, CIR, SIDS
- ECHA: http://echa.europa.eu/
- NTP: http://tools.niehs.nih.gov/ntp_tox/index.cfm
- OECD Toolbox
- SciFinder: https://scifinder.cas.org/scifinder/view/scifinder/ scifinderExplore.jsf
- PUBMED: http://www.ncbi.nlm.nih.gov/pubmed
- **TOXNET:** http://toxnet.nlm.nih.gov/
- **IARC:** (http://monographs.iarc.fr)
- OECD SIDS: http://www.chem.unep.ch/irptc/sids/oecdsids/ sidspub.html
- EPA Actor: http://actor.epa.gov/actor/faces/ACToRHome .jsp;jsessionid=0EF5C212B7906229F477472A9A4D05B7
- US EPA HPVIS: http://www.epa.gov/hpv/hpvis/index.html
- US EPA Robust Summary: http://cfpub.epa.gov/hpv-s/
- Japanese NITE: http://www.safe.nite.go.jp/english/db.html
- Japan Existing Chemical Data Base: http://dra4.nihs.go.jp/ mhlw_data/jsp/SearchPageENG.jsp
- Google: https://www.google.com/webhp?tab=ww&ei =KMSoUpiQK-arsQS324GwBg&ved=0CBQQ1S4

*Information sources outside of RIFM's database are noted as appropriate in the safety assessment.

This is not an exhaustive list.

Conflict of interest

The authors declare that there are no conflicts of interest.

Transparency document

The Transparency document associated with this article can be found in the online version.

Appendix

	Target Material	Read across Material
Principal Name	l-Borneol	Isobornyl acetate
CAS No.	464-45-9	125-12-2
Structure	H ₃ C CH ₃	e ^{uu} CH ₃
	HO ^{WW} CH ₃	H ₃ C 0
3D Structure	http://www.thegoodscentscompany .com/opl/464-45-9.html	http://www.thegoodscentscompany .com/opl/125-12-2.html
Read-across endpoint	.com/op/+o++5 5.ntm	Repeated Dose Devel/Repro
Molecular Formula	C10H18O	C12H20O2
Molecular Weight	154.25	196.29
Melting Point (°C, EPISUITE)	26.56	34.11
Boiling Point (°C, EPISUITE)	209.98	225.89
Vapor Pressure (Pa @ 25 °C, EPISUITE)	0.0572	14.27
Log Kow (KOWWIN v1.68 in EPISUITE)	2.85	3.86
Water Solubility (mg/L, @ 25 °C, WSKOW v1.42 in EPISUITE)	1186	9.721
J _{max} (mg/cm ² /h, SAM)	43.96956395	18.65520626
Henry's Law (Pa·m³/mol, Bond Method, EPISUITE)	0.679384	44.228362
Similarity (Tanimoto score)		N/A ^a
In silico Results for Target and Analog		
Repeated Dose Toxicity		
Repeated dose (HESS)	Not categorized	Not categorized
Developmental and Reproductive Toxicity		
ER binding (OECD)	Weak binder, OH group	Non binder, without OH or NH2 group
Developmental toxicity model (CAESAR v2.1.6)	Toxicant (good reliability)	NON-Toxicant (low reliability)
Metabolism Rat liver S9 metabolism simulator (OECD)	See supplemental data 1	See supplemental data 2

^a N/A, Not Applicable. Target is a metabolite of the analog.

Summary

There are insufficient toxicity data on l-Borneol (RIFM # 325, CAS # 464-45-9). Hence, *in silico* evaluation was conducted to determine suitable read-across material. Based on structural similarity, reactivity, metabolism data, physicochemical properties and expert judgment, the above shown read-across materials were identified as proper read across for their respective toxicity endpoints.

Methods

- The identified read-across analogs were confirmed by using expert judgment.
- The physicochemical properties of target and analogs were calculated using EPI Suite[™] v4.11 developed by US EPA (USEPA, 2012).
- The J_{max} were calculated using RIFM skin absorption model (SAM), the parameters were calculated using consensus model (Shen et al., 2014).
- DNA binding, mutagenicity, genotoxicity alerts and oncologic classification were estimated using OECD QSAR Toolbox (v3.1) (OECD, 2012).
- ER binding and repeat dose categorization were estimated using OECD QSAR Toolbox (v3.1) (OECD, 2012).
- Developmental toxicity and skin sensitization were estimated using CAESAR (v.2.1.6) (Cassano et al., 2010).
- Protein binding were estimated using OECD QSAR Toolbox (v3.1) (OECD, 2012).

Conclusion/Rationale

- Isobornyl acetate (analog) was used as a read-across for l-borneol (target) based on:
 - $\circ\;$ The target is a major metabolite of the analog.
 - Both are terpenes and have in common the structure of l-borneol – the analog is the acetate ester form of the target and will rapidly hydrolyze into the analog and acetic acid.
 - The target and analog show similar alerts for Repeated Dose (HESS) Categorization and ER Binding. ER Binding is molecular initiating event analogous to protein binding. ER binding is not necessarily predictive of endocrine disruption given the complex pre- and post-receptor events that determine activity.
 - As per the OECD Toolbox, the target is one of the metabolites of the analog, (metabolites #3).

Explanation of Cramer Class

The Cramer class of the target material was determined based on Cramer decision tree (Cramer et al., 1978).

- Q1. Normal constituent of the body: No
- Q2. Contains functional groups associated with enhanced toxicity: **No**
- Q3. Contains elements other than C, H, O, N, divalent S: No

Q5. Simply branched aliphatic hydrocarbon or a common carbohydrate: **No**

- Q6. Benzene derivative with certain substituents: No
- Q7. Heterocyclic: No
- Q16. Common terpene: Yes, Class Low (Class I)

Appendix: Supplementary material

Supplementary data to this article can be found online at doi:10.1016/j.fct.2015.04.013.

References

- Antoine, B., Magdalou, J., Siest, G., 1984. Kinetic properties of UDPglucuronosyltransferase (s) in different membranes of rat liver cells. Xenobiotica 14 (7), 575–579.
- Api, A.M., Belsito, D., Bruze, M., Cadby, P., Calow, P., Dagli, M.L., et al., 2014. Criteria for the Research Institute for Fragrance Materials, Inc. (RIFM) safety evaluation process for fragrance ingredients. Food Chem. Toxicol. accepted for publication.
- Belsito, D., Bickers, D., Bruze, M., Calow, P., Greim, H., Hanifin, J.M., et al., 2008. A toxicologic and dermatologic assessment of cyclic and non-cyclic terpene alcohols when used as fragrance ingredients. Food Chem. Toxicol. 46 (11), S1–S71.
- Bhatia, S.P., McGinty, D., Letizia, C.S., Api, A.M., 2008. Fragrance material review on I-borneol. Food Chem. Toxicol. 46 (11), S81–S84.
- Bhatia, S.P., McGinty, D., Letizia, C.S., Api, A.M., 2008a. Fragrance material review on borneol. Food Chem. Toxicol. 46, S77–S81.
- Boutin, J.A., Lepage, C., Batt, A.M., Siest, G., 1981. The activity of hepatic UDPglucuronosyltransferase from control and induced pigs towards 17 hydroxylated aglycones. IRCS Med. Sci. Biochem. 9 (7), 633–634.
- Boutin, J.A., Siest, G., Batt, A.M., Solheim, E., Scheline, R.R., 1983. Studies of UDPglucuronosyltransferase activity toward eugenol, using a gas chromatographic method of measurement. Anal. Biochem. 135 (1), 201–207.
- Boutin, J.A., Thomassin, J., Siest, G., Batt, A.M., 1984. Inhibition studies of microsomal UDP-glucuronosyltransferase activities by furosemide and salicylamide. Pharmacol. Res. Commun. 16 (3), 227–241.
- Boutin, J.A., Thomassin, J., Siest, G., Cartier, A., 1985. Heterogeneity of hepatic microsomal UDP-glucuronosyltransferase activities: Conjugations of phenolic and monoterpenoid aglycones in control and induced rats and guinea pigs. Biochem. Pharmacol. 34 (13), 2235–2249.
- Buchbauer, G., Jirovetz, L., Jáger, W., Plank, C., Dietrich, H., 1993. Fragrance compounds and essential oils with sedative effects upon inhalation. J. Pharm. Sci. 82 (6), 660–664.
- Cadby, P.A., Troy, W.R., Vey, M.G., 2002. Consumer exposure to fragrance ingredients: providing estimates for safety evaluation. Regul. Toxicol. Pharmacol. 36 (3), 246–252.
- Carthew, P., Clapp, C., Gutsell, S., 2009. Exposure based waiving: the application of the toxicological threshold of concern (ttC) to inhalation exposure for aerosol ingredients in consumer products. Food Chem. Toxicol. 47 (6), 1287–1295.
- Cassano, A., Manganaro, A., Martin, T., Young, D., Piclin, N., Pintore, M., et al., 2010. CAESAR models for developmental toxicity. Chem. Cent. J. 4 (Suppl. 1), S4.
- Cramer, G.M., Ford, R.A., Hall, R.L., 1978. Estimation of toxic hazard A decision tree approach. Food Cosmet. Toxicol. 16 (3), 255–276.
- 2015. ECHA REACH Dossier: exo-1,7,7-Trimethylbicyclo[2.2.1]hept-2-yl acetate. http://apps.echa.europa.eu/registered/data/dossiers/DISS-b8dd69b0-4345-07f7 -e044-00144f67d031/DISS-b8dd69b0-4345-07f7-e044-00144f67d031_DISSb8dd69b0-4345-07f7-e044-00144f67d031.html>.
- Essential Estimation Programs Interface (EPI) SuiteTM (version 4.1) [Software], 2000–2011. US Environmental Protection Agency's Office of Pollution Prevention and Toxics and Syracuse Research Corporation. Research 20 (6), 482–487. Retrieved from: http://www.epa.gov/opptintr/exposure/pubs/episuite.htm; Copyright.
- Ford, R.A., Domeyer, B., Easterday, O., Maier, K., Middleton, J., 2000. Criteria for development of a database for safety evaluation of fragrance ingredients. Regul. Toxicol. Pharmacol. 31 (2), 166–181.
- Gaunt, I.F., Agrelo, C.E., Colley, J., Lansdown, A.B.G., Grasso, P., 1971. Short-term toxicity of isobornyl acetate in rats. Food Cosmet. Toxicol. 9 (3), 355–366.
- Green, M.D., Tephly, T.R., 1996. Glucuronidation of amines and hydroxylated xenobiotics and endobiotics catalyzed by expressed human UGT1. 4 protein. Drug Metab. Dispos. 24 (3), 356–363.
- Henry, B., Foti, C., Alsante, K., 2009. Can light absorption and photostability data be used to assess the photosafety risks in patients for a new drug molecule? J. Photochem. Photobiol. B. 96 (1), 57–62.
- IFRA (International Fragrance Association), 2004. Use Level Survey, September 2004.

- IFRA (International Fragrance Association), 2011. Volume of Use Survey, February 2011.
- Leclerc, S., Heydel, J.M., Amossé, V., Gradinaru, D., Cattarelli, M., Artur, Y., et al., 2002. Glucuronidation of odorant molecules in the rat olfactory system. Activity, expression and age-linked modifications of UDP-glucuronosyltransferase isoforms, UGT1A6 and UGT2A1, and relation to mitral cell activity. Molecular brain research 107 (2), 201–213.
- Lehman-McKeeman, L.D., Caudill, D., 1999. Development of an in vitro competitive binding assay to predict alpha2u-globulin nephropathy. In Vitr. Mol. Toxicol. 12 (2), 83–95.
- Leibman, K.C., Ortiz, E., 1973. Mammalian metabolism of terpenoids I. Reduction and hydroxylation of camphor and related compounds. Drug Metab. Dispos. 1 (2), 543–551.

OECD, 2012. The OECD QSAR Toolbox, v 3.1. < http://www.qsartoolbox.org/>.

- Pinching, A.J., Døving, K.B., 1974. Selective degeneration in the rat olfactory bulb following exposure to different odours. Brain Res. 82 (2), 195–204.
- Pryde, J., Williams, R.T., 1934. The biochemistry and physiology of glucuronic acid: (a) The occurrence of conjugated glucuronic acids in the animal body. (b) Observations on the conjugation of d-and I-borneol. Biochem. J. 28 (1), 131–135.
- Quick, A.J., 1927. The preparation of borneol glycuronic acid and glycuronic acid. J. Biol Chem 74 (2) 331-341
- Quick, A.J., 1928. Quantitative studies of beta-oxidation. IV. The metabolism of conjugated glycuronic acids. J. Biol. Chem. 80, 535-541.
- RIFM (Research Institute for Fragrance Materials, Inc.), 1972. The contact-sensitization potential of fragrance materials by maximization testing in humans. RIFM report number 1804. RIFM, Woodcliff Lake, NJ, USA.
- RIFM (Research Institute for Fragrance Materials, Inc.), 1973. Report on human maximization studies. RIFM report number 1803. RIFM. Woodcliff Lake, NI, USA.
- RIFM (Research Institute for Fragrance Materials, Inc.), 2000. I-Borneol: Biodegradation. Unpublished Report from Symrise. RIFM report number 55011. RIFM, Woodcliff Lake, NJ, USA.
- RIFM (Research Institute for Fragrance Materials, Inc.), 2000a. I-Borneol: Acute daphnia toxicity. Unpublished Report from Symrise. RIFM report number 55012. RIFM, Woodcliff Lake, NJ, USA.
- RIFM (Research Institute for Fragrance Materials, Inc.), 2011. Oral (gavage) onegeneration reproduction study of isobornyl acetate in rats, with an evaluation through sexual maturity in the F1 generation. RIFM report number 62950. RIFM, Woodcliff Lake, NJ, USA.
- RIFM (Research Institute for Fragrance Materials, Inc.), 2013. I-Borneol: Reverse mutation assay "Ames Test" using Salmonella typhimurium and Escherichia coli. RIFM report number 65023. RIFM, Woodcliff Lake, NJ, USA.
- RIFM (Research Institute for Fragrance Materials, Inc.), 2013a. I-Borneol: In vitro Mammalian Cell Micronucleus Assay in human peripheral blood lymphocytes (HPBL). RIFM report number 66358. RIFM, Woodcliff Lake, NJ, USA.
- RIFM (Research Institute for Fragrance Materials, Inc.), 2013b. Report on the testing of I-borneol in the BlueScreen HC Assay (-/+ S9 metabolic activation). RIFM report number 65027. RIFM, Woodcliff Lake, NJ, USA.
- Roberts, D.W., Patlewicz, G., Kern, P.S., Gerberick, F., Kimber, I., Dearman, R.J., et al., 2007. Mechanistic applicability domain classification of a local lymph node assay dataset for skin sensitization. Chem. Res. Toxicol. 20 (7), 1019–1030.
- Robertson, J.S., Hussain, M., 1969. Metabolism of camphors and related compounds. Biochem. J. 113, 57–65.

Salvito, D.T., Senna, R.J., Federle, T.W., 2002. A framework for prioritizing fragrance materials for aquatic risk assessment. Environ. Toxicol. Chem. 21 (6), 1301–1308.

- Schafer, R., Schafer, W., 1982. Percutaneous-absorption of various terpenes menthol, camphene, limonene, isoborneolacetate, alpha-pinene from foam baths. Arzneimittel-Forschung/Drug Research 32 (1), 56–58.
- Shen, J., Kromidas, L., Schultz, T., Bhatia, S., 2014. An in silico skin absorption model for fragrance materials. Food Chem. Toxicol. 74 (12), 164–176.
- Tamura, S.S., Tsutsumi, S., Kizu, K., 1962. Studies on glucuronic acid metabolism. I. The influence of borneol, ionone and carvone on the urinary excretion of glucuronic acid and ascorbic acid. Folia Pharmacol. Janponica 58, 323–336.
- USEPA, 2012. Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11 Washington, DC, USA, United States Environmental Protection Agency.
- Wagreich, H., Bernstein, A., Pader, M., Harrow, B., 1941. Detoxication of Borneo1 by glucuronic acid in humans. Exp. Biol. Med. 46 (4), 582–586.
- Wu, C.J., Huang, Q.W., Qi, H.Y., Hou, S., 2005. Ocular toxicity of borneol in rabbits. Chin. Pharm. J. Beijing 40 (22), 1710.