Short review

RIFM fragrance ingredient safety assessment, nootkatone, CAS Registry Number 4674-50-4

Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Wurzburg, Germany
Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 1316 Biomedical Research Building (BBR) II/III, 421 Currie Boulevard, Philadelphia, PA, 19104-3083, USA
The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3129, Japan

Abbreviation/Definition List:

Version: 041919. This version replaces any previous versions.
Name: Nootkatone
CAS Registry Number: 4674-50-4

https://doi.org/10.1016/j.fct.2020.111426
Received 5 November 2019; Received in revised form 8 April 2020; Accepted 7 May 2020
Available online 24 May 2020
0278-6915/ © 2020 Elsevier Ltd. All rights reserved.
2-Box Model - A RIFM, Inc. proprietary in silico tool used to calculate fragrance air exposure concentration

AF - Assessment Factor

BCEF - Bioconcentration Factor

Creme RIFM model - The Creme RIFM Model uses probabilistic (Monte Carlo) simulations to allow full distributions of data sets, providing a more realistic estimate of aggregate exposure to individuals across a population (Comiskey et al., 2015, 2017; Safford et al., 2015a; Safford et al., 2017) compared to a deterministic aggregate approach.

DEREK - Derek Nexus is an in silico tool used to identify structural alerts

DRF - Dose Range Finding

DST - Dermal Sensitization Threshold

ECHA - European Chemicals Agency

ECOSAR - Ecological Structure-Activity Relationships Predictive Model

EU - Europe / European Union

GLP - Good Laboratory Practice

IFRA - The International Fragrance Association

LOEL - Lowest Observable Effect Level

MOE - Margin of Exposure

MPPD - Multiple-Path Particle Dosimetry. An in silico model for inhaled vapors used to simulate fragrance lung deposition

NA - North America

NESIL - No Expected Sensitization Induction Level

NOAEC - No Observed Adverse Effect Concentration

NOAEL - No Observed Adverse Effect Level

NOEC - No Observed Effect Concentration

OECD - Organisation for Economic Co-operation and Development

OECD TG - Organisation for Economic Co-operation and Development Testing Guidelines

PEC/PNEC - Predicted Environmental Concentration/Predicted No Effect Concentration

QRA - Quantitative Risk Assessment

QSAR - Quantitative Structure-Activity Relationship

REACH - Registration, Evaluation, Authorisation, and Restriction of Chemicals

RID - Reference Dose

RIFM - Research Institute for Fragrance Materials

RQ - Risk Quotient

Statistically Significant - Statistically significant difference in reported results as compared to controls with a p < 0.05 using appropriate statistical test

TTC - Threshold of Toxicological Concern

UV/VIS spectra - Ultraviolet/Visible spectra

VCF - Volatile Compound in Food

VoU - Volume of Use (VPU) - (very) Persistent, (very) Bioaccumulative

WoE - Weight of Evidence

The Expert Panel for Fragrance Safety* concludes that this material is safe as described in this safety assessment. This safety assessment is based on the RIFM Criteria Document (Api et al., 2015), which should be referred to for clarifications.

The Expert Panel for Fragrance Safety is an independent body that selects its own members and establishes its own operating procedures. The Expert Panel is comprised of internationally known scientists that provide RIFM with guidance relevant to human health and environmental protection.

Summary: The existing information supports the use of this material as described in this safety assessment.

Nootkatone was evaluated for genotoxicity, repeated dose toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, and environmental safety. Data show that noootkatone is not genotoxic. The repeated dose and reproductive toxicity endpoints were evaluated using the threshold of toxicological concern (TTC) for a Cramer Class II material, and the exposure to noootkatone is below the TTC (0.009 mg/kg/day and 0.009 mg/kg/day, respectively). Data show that there are no safety concerns for noootkatone for skin sensitization under the current declared levels of use. The phototoxicity/photomalignancy endpoints were evaluated based on ultraviolet (UV) spectra; noootkatone is not expected to be phototoxic/photomalignant. The local respiratory toxicity endpoint was evaluated using the TTC for a Cramer Class II material, and the exposure to noootkatone is below the TTC (0.047 mg/day). The environmental endpoints were evaluated; noootkatone was found not to be persistent, bioaccumulative, and toxic (PBT) as per the International Fragrance Association (IFRA) Environmental Standards, and its risk quotient, based on its current volume of use in Europe and North America (i.e., Predicted Environmental Concentration/Predicted No Effect Concentration [PEC/PNEC]), are < 1.

1. Identification

1. Chemical Name: Nootkatone
2. CAS Registry Number: 4674-50-4
3. Synonyms: 5,6-Dimethyl-8-isopropenylbicyclo[4.4.0]dec-1-ene-3-one; 4a,5-Dimethyl-1,2,3,4,4a,5,6,7-octahydro-7-keto-3-isopropyl-5-naphthalene; (4R,4aR,6aR)-4a,5,6,7,8-Hexahydro-4-isopropenyl-4,4a-dimethyl-2(3H)-naphthalenone; (2H)-Naphthalenone, 4a,5,6,7,8-hexahydro-4,4a-dimethyl-6-(1-methylmethylvinyl)naphthalen-2(1H)-one; 4,4a,5,6,7,8-Hexahydro-6-isopropenyl-4,4a-dimethyl-2(3H)-naphthalenone; 4a,5,6,7,8-Hexahydro-4-isopropenyl-4,4a-dimethyl-2(3H)-naphthalenone; 4,4a,5,6,7,8-Hexahydro-4,4a-dimethyl-6-(1-methylthienyl)-, (4R,4aS,6R)-; 4βH,5α-Eremophila-1(10),11-dien-2-one; 4βH,5α-Eremophila-1(10),11-dien-2-one; 4βH,5α-Eremophila-1(10),11-dien-2-one; 4βH,5α-Eremophila-1(10),11-dien-2-one; 6-Isopropenyl-4,4a-dimethyl-4,4a,5,6,7,8-hexahydronaphthalen-2(1H)-one; Nootkatone Crystals; Nootkatone

4. Molecular Formula: C₁₅H₂₂O
5. Molecular Weight: 218.34
6. RIFM Number: 988
7. Stereochemistry: Stereoisomer not specified. Two stereocenters and 1 geometric center present making a total of 8 isomers possible.

2. Physical data

1. Boiling Point: 125 °C at 0.5 mm Hg, 298.76 °C (EPI Suite)
2. Flash Point: 160 °F; CC (Fragrance Materials Association), > 212 °F
3. Log Kow: Log Pow = 3.7 (RIFM, 2010a), 4.88 (EPI Suite)
4. Melting Point: 32 °C, 76.84 °C (EPI Suite)
5. Water Solubility: 2.375 mg/L (EPI Suite)
6. SpecificGravity: 0.9963 (RIFM)
7. Vapor Pressure: 0.000666 mm Hg @ 20 °C (EPI Suite v4.0), 0.00123 mm Hg @ 25 °C (EPI Suite)
8. UV Spectra: No significant absorbance between 290 and 700 nm;
molar absorption coefficient is below the benchmark (1000 L mol⁻¹ · cm⁻¹).

9. Appearance/Organoleptic: A clear, pale yellow to yellow liquid with an extremely powerful, fruity, sweet and citrusy odor (Arctander, 1969)

3. Volume of use (worldwide band)

1. Volume of Use (Worldwide Band): 0.1–1 metric ton per year (IFRA, 2015)

4. Exposure to fragrance ingredient (Creme RIFM aggregate exposure model v2.0)

1. 95th Percentile Concentration in Hydroalcoholics: 0.0025% (RIFM, 2018)
2. Inhalation Exposure*: 0.0000045 mg/kg/day or 0.00032 mg/day (RIFM, 2018)
3. Total Systemic Exposure**: 0.00012 mg/kg/day (RIFM, 2018)

*95th percentile calculated exposure derived from concentration survey data in the Creme RIFM Aggregate Exposure Model (Comiskey et al., 2015; Safford et al., 2015; Safford et al., 2017; and Comiskey et al., 2017).

**95th percentile calculated exposure; assumes 100% absorption unless modified by dermal absorption data as reported in Section V. It is derived from concentration survey data in the Creme RIFM Aggregate Exposure Model and includes exposure via dermal, oral, and inhalation routes whenever the fragrance ingredient is used in products that include these routes of exposure (Comiskey et al., 2015; Safford et al., 2015; Safford et al., 2017; and Comiskey et al., 2017).

5. Derivation of systemic absorption

1. Dermal: Assumed 100%
2. Oral: Assumed 100%
3. Inhalation: Assumed 100%

6. Computational toxicology evaluation

<table>
<thead>
<tr>
<th>Expert Judgment</th>
<th>Toxtree v 2.6</th>
<th>OECD QSAR Toolbox v 3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>II*</td>
<td>III</td>
<td>I</td>
</tr>
</tbody>
</table>

*Due to potential discrepancies with the current in silico tools (Bhatia et al., 2015), the Cramer Class of the target material was determined using expert judgment based on the Cramer decision tree (Cramer et al., 1978). See the Appendix below for further details.

2. Analogs Selected:
 a. Genotoxicity: None
 b. Repeated Dose Toxicity: None
 c. Reproductive Toxicity: None
 d. Skin Sensitization: None
 e. Phototoxicity/Photoallergenicity: None
 f. Local Respiratory Toxicity: None
 g. Environmental Toxicity: None
3. Read-across Justification: None

7. Metabolism

According to the WHO/JECFA Expert Committee, nootkatone is not expected to undergo glutathione conjugation. Rather, CYP-mediated side-chain oxidation and ketone reduction are reported to yield polar and excretable poly-oxygenated metabolites of nootkatone (see Fig. 1; WHO, 2006).

7.1. Additional References

None.

8. Natural occurrence (discrete chemical) or composition (NCS)

Nootkatone is reported to occur in the following foods by the VCF*:
 Citrus fruits.
 Curry (Bergera koenigii L.)

9. REACH dossier

Pre-registered for 2010; no dossier available as of 04/08/20.

10. Conclusion

The existing information supports the use of this material as described in this safety assessment.

11. Summary

11.1. Human health endpoint summaries

11.1.1. Genotoxicity

Based on the current existing data, nootkatone does not present a concern for genotoxicity.

11.1.1.1. Risk assessment. The mutagenic activity of nootkatone has been evaluated in a bacterial reverse mutation assay conducted in compliance with GLP regulations and in accordance with OECD TG 471 (OECD, 1997) using the preincubation method. Salmonella typhimurium strains TA98, TA100, TA1535, TA1537, and TA102 were treated with nootkatone in dimethyl sulfoxide (DMSO) at concentrations up to 5000 μg/plate. No increases in the mean number of revertant colonies were observed at any tested concentration in the presence or absence of S9 (RIFM, 1998). Under the conditions of the study, nootkatone was not mutagenic in the Ames test.

The clastogenic activity of nootkatone was evaluated in an in vitro micronucleus test conducted in compliance with GLP regulations and in accordance with OECD TG 487 (OECD, 2010). Human peripheral blood lymphocytes were treated with nootkatone in DMSO at concentrations up to 1200 μg/mL in the dose range finding (DRF) study; micronuclei analysis was conducted at concentrations up to 185 μg/mL in the presence and absence of S9 for 3 h and in the absence of S9 for 24 h. Nootkatone did not induce binucleated cells with micronuclei when tested up to cytotoxic levels in either the presence or absence of an S9 activation system (RIFM, 2011). Under the conditions of the study, nootkatone was considered to be non-clastogenic in the in vitro

Fig. 1. Nootkatone metabolism in rabbits (WHO, 2006).
micronucleus test.
Based on the data available, nootkatone does not present a concern for genotoxic potential.

Additional References: None.

Literature Search and Risk Assessment Completed On: 06/13/19.

11.1.2. Repeated dose toxicity
There are insufficient repeated dose toxicity data on nootkatone or any read-across materials. The total systemic exposure to nootkatone is below the TTC for the repeated dose toxicity endpoint of a Cramer Class II material at the current level of use.

11.1.2.1. Risk assessment. There are insufficient repeated dose toxicity data on nootkatone or any read-across materials that can be used to support the repeated dose toxicity endpoint. The total systemic exposure to nootkatone (0.12 μg/kg bw/day) is below the TTC (9 μg/kg bw/day; Kroes et al., 2007) for the repeated dose toxicity endpoint of a Cramer Class II material at the current level of use.

Weight of Evidence (WoE):
RIFM, 2004: A GLP-compliant single-dose subchronic toxicity study was conducted following modified OECD 407 guidelines to evaluate the GRAS status of the test material. During the study, 10 Sprague Dawley Crl:CD (SD) IGS BR rats/six/dose were administered nootkatone (purity: 70%) by gavage at doses of 0 and 10 mg/kg/day for 28 days. No treatment-related adverse effects were reported. However, at 10 mg/kg/day, globular eosinophilic material accumulations were observed in the tubular epithelium of male kidneys. This kidney finding was attributed to the α-2u-globulin nephropathy and not considered to be of toxicological significance (Lehman-McKeeman and Caudill, 1992; Lehman-McKeeman et al., 1990). Since this a single-dose study, it is considered insufficient for the current risk assessment.

Additional References: None.

Literature Search and Risk Assessment Completed On: 06/07/19.

11.1.3. Reproductive toxicity
There are insufficient reproductive toxicity data on nootkatone or on any read-across materials. The total systemic exposure to nootkatone is below the TTC for the reproductive toxicity endpoint of a Cramer Class II material at the current level of use.

11.1.3.1. Risk assessment. There are insufficient reproductive toxicity data on nootkatone or on any read-across materials that can be used to support the reproductive toxicity endpoint. The total systemic exposure to nootkatone (0.12 μg/kg bw/day) is below the TTC (9 μg/kg bw/day; Kroes et al., 2007; Laufersweiler et al., 2012) for the reproductive toxicity endpoint of a Cramer Class II material at the current level of use.

Literature Search and Risk Assessment Completed On: 05/07/19.

11.1.4. Skin sensitization
Based on the existing data, nootkatone does not present a concern for skin sensitization under the current, declared levels of use.

11.1.4.1. Risk assessment. Based on the existing data, nootkatone (purity > 98%) does not present a concern for skin sensitization under the current, declared levels of use. The chemical structure of this material indicates that it would be expected to react with skin proteins (Roberts et al., 2007; Texttree 3.1.0; OECD Toolbox v4.2 [OECD, 2018]). In guinea pigs, an open epicutaneous test did not present skin sensitization reactions (RIFM, 1971a). In 2 human maximization tests with 10% or 6900 μg/cm² nootkatone, skin sensitization reactions were observed in 3/28 and 1/25 subjects (RIFM, 1978; RIFM, 1977). In these human maximization tests, the purity of the nootkatone sample was 86%. In another human maximization test with 10% or 6900 μg/cm² nootkatone, no reactions indicative of skin reactions were observed in the 25 subjects. In this study, the purity of nootkatone sample was 98%. Additionally, a confirmatory human repeat insult patch test (HR IPT) was conducted using nootkatone with 99% purity. No reactions indicative of sensitization were observed in any of the 103 volunteers in response to 1000 μg/cm² of nootkatone in 3:1 diethyl phthalate:ethanol (DEP:EtOH), (RIFM, 2005a). In another HR IPT with 2% nootkatone (unknown purity) in dimethyl phthalate (DMP), no skin sensitization reactions were observed in 53 volunteers (RIFM, 1971b).

Based on the WoE from structural analysis and animal and human studies, nootkatone with purity higher than 98% does not present a concern for skin sensitization under the current, declared levels of use. However, nootkatone at lower purity led to skin sensitization.

Additional References: None.

Literature Search and Risk Assessment Completed On: 05/22/19.

11.1.5. Phototoxicity/photoallergenicity
Based on the available UV/Vis spectra, nootkatone would not be expected to present a concern for phototoxicity or photoallergenicity.

11.1.5.1. Risk assessment. There are no phototoxicity studies available for nootkatone in experimental models. UV/Vis absorption spectra indicate no significant absorption between 290 and 700 nm. The corresponding molar absorption coefficient is well below the benchmark of concern for phototoxicity and photoallergenicity (Henry et al., 2009). Based on the lack of absorbance, nootkatone does not present a concern for phototoxicity or photoallergenicity.

11.1.5.2. UV spectra analysis. UV/Vis absorption spectra (OECD TG 101; OECD, 1981) were obtained. The spectra indicate no significant absorbance in the range of 290–700 nm. The molar absorption coefficient is below the benchmark of concern for phototoxic effects, 1000 L mol⁻¹ · cm⁻¹ (Henry et al., 2009).

Additional References: None.

Literature Search and Risk Assessment Completed On: 05/06/19.

11.1.6. Local respiratory toxicity
The margin of exposure could not be calculated due to a lack of appropriate data. The exposure level for nootkatone is below the Cramer Class III* TTC value for inhalation exposure local effects.

11.1.6.1. Risk assessment. There are no inhalation data available on nootkatone. Based on the Creme RIFM Model, the inhalation exposure is 0.00032 mg/d. This exposure is 1468.8 times lower than the Cramer Class III* TTC value of 0.47 mg/day (based on human lung weight of 650 g; Carthew et al., 2009); therefore, the exposure at the current level of use is deemed safe.

*As per Carthew et al. (2009), Cramer Class II materials default to Cramer Class III for the local respiratory toxicity endpoint.

Additional References: None.

Literature Search and Risk Assessment Completed On: 05/15/19.

11.2. Environmental endpoint summary

11.2.1. Screening-level assessment
A screening-level risk assessment of nootkatone was performed following the RIFM Environmental Framework (Salvito et al., 2002) that provides 3 tiered levels of screening for aquatic risk. In Tier 1, only the material’s regional volume of use, log KOW and molecular weight are needed to estimate a conservative risk quotient (RQ) expressed as
the ratio: Predicted Environmental Concentration/Predicted No Effect Concentration (PEC/PNEC). In Tier 1, a general QSAR for fish toxicity is used with a high uncertainty factor, as discussed in Salvito et al. (2002). In Tier 2, the model ECOSAR (US EPA, 2012b; providing chemical class specific ecotoxicity estimates) is used, allowing for a lower uncertainty factor to be applied to the PNEC. Finally, if necessary, Tier 3 is conducted using measured biodegradation and ecotoxicity data to refine the RQ, thus allowing for lower PNEC uncertainty factors. The data for calculating the PEC and PNEC for this safety assessment are provided in the table below. For the PEC, the range of the most recent IFRA Volume of Use Survey is reviewed. The PEC is then calculated based on the actual regional tonnage and not the extremes of the range. Following the RIFM Environmental Framework, nootkatone was identified as a fragrance material with no potential to present a possible risk to the aquatic environment (i.e., its screening-level PEC/PNEC < 1).

A screening-level hazard assessment using EPI Suite v4.11 (US EPA, 2012a) did not identify nootkatone as possibly persistent or bioaccumulative based on its structure and physical-chemical properties. This screening-level hazard assessment considers the potential for a material to be persistent and bioaccumulative and toxic or very persistent and very bioaccumulative as defined in the Criteria Document (Api et al., 2015). As noted in the Criteria Document, the screening criteria applied are the same criteria used in the EU for REACH (ECHA, 2012). For persistence, if the EPI Suite models BIOWIN 2 or BIOWIN 6 < 0.5 and BIOWIN 3 < 2.2, then the material is considered to be potentially persistent. A material would be considered potentially bioaccumulative if the EPI Suite model BCFBAF predicts a fish BCF ≥ 2000 L/kg. Ecotoxicity is determined in the above screening-level risk assessment. Should an additional assessment be required, based on these model outputs (Step 1), a WoE-based review is performed (Step 2). This review considers available data on the material’s physical-chemical properties, environmental fate (e.g., OECD Guideline biodegradation studies or die-away studies), fish bioaccumulation, and higher tier model outputs (e.g., US EPA’s BIOWIN and BCFBAF found in EPI Suite v4.11). Data on biodegradation, fate, and bioaccumulation are reported below and summarized in the Environmental Safety Assessment section prior to Section 1.

11.2.2. Risk assessment

Based on the current Volume of Use (2015), nootkatone presents no risk to the aquatic compartment in the screening-level assessment.

11.2.3. Key studies

11.2.3.1. Biodegradation. RIFM, 2010b: The biodegradability of the test material was evaluated using the manometric respirometry test according to OECD 301F method (OECD, 1992). Biodegradation of 65% was observed after 28 days.

11.2.3.2. Ecotoxicity. RIFM, 2005b: The 7-day short-term chronic static-renewal toxicity tests were conducted with Fathead minnow and Ceriodaphnia dubia. The 7-day NOEC values of 3.56 and 7.13 mg/L were reported for Fathead minnow and Ceriodaphnia dubia, respectively.

11.2.4. Other available data

Nootkatone has been pre-registered under REACH, and no additional data is available at this time.

11.2.5. Risk assessment refinement

Since nootkatone has passed the screening criteria, measured data is included for completeness only and has not been used in PNEC derivation.

Ecotoxicological data and PNEC derivation (all endpoints reported in mg/L; PNECs in μg/L).

Endpoints used to calculate PNEC are underlined.

<table>
<thead>
<tr>
<th>Log Kow Used</th>
<th>Dilution Factor</th>
<th>Regional Volume of Use Tonnage Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7</td>
<td>3</td>
<td>< 1</td>
</tr>
<tr>
<td>3.7</td>
<td>3</td>
<td>< 1</td>
</tr>
</tbody>
</table>

Based on available data, the RQ for this material is < 1. No further assessment is necessary.

The RIFM PNEC is 0.00978 μg/L. The revised PEC/PNECs for EU and NA are not applicable; the material was cleared at the screening-level; therefore, it does not present a risk to the aquatic environment at the current reported volumes of use.

Literature Search and Risk Assessment Completed On: 05/07/19.

12. Literature Search*

- RIFM Database: Target, Fragrance Structure-Activity Group materials, other references, JECFA, CIR, SIDS
- ECHA: https://echa.europa.eu/
- NTP: https://ntp.niehs.nih.gov/
- OECD Toolbox
- SciFinder: https://scifinder.cas.org/scifinder/view/scifinder/scifinderExplore.jsf
- EPA ACToR: https://actor.epa.gov/actor/home.xhtml
- US EPA HPVIS: https://ofmpub.epa.gov/opthpv/public_search.publicdetails?submission_id=24959241&ShowComments=Yes&sqlstr=null&recordcount=0&User_title=DetailQuery%20Results&
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome. RIFM staff are employees of the Research Institute for Fragrance Materials, Inc. (RIFM). The Expert Panel receives a small honorarium for time spent reviewing the subject work.

Appendix

Explanation of Cramer Classification

Due to potential discrepancies between the current in silico tools (Bhatia et al., 2015), the Cramer Class of the target material was determined using expert judgment, based on the Cramer decision tree.

Q1. A normal constituent of the body? No
Q2. Contains functional groups associated with enhanced toxicity? No
Q3. Contains elements other than C, H, O, N, and divalent S? No
Q4. Simply branched aliphatic hydrocarbon or a common carbohydrate? No
Q5. Benzene derivative with certain substituents? No
Q6. Benzene derivative with certain substituents? No
Q7. Heterocyclic? No
Q16. Common terpene (see Cramer et al., 1978 for detailed explanation)?
Q17. Readily hydrolyzed to a common terpene? No
Q19. Open chain? No
Q23. Aromatic? No
Q24. Monocarboxylic with simple substituents? No
Q25. Cyclopropane (see explanation in Cramer et al., 1978)? No
Q26. Monocycloalkane or a bicyclic compound? Yes, Class II (Intermediate)

References

