Short Review

RIFM fragrance ingredient safety assessment, isovaleric acid, CAS Registry Number 503-74-2

a Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
b Member RIFM Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
c Member RIFM Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
d Member RIFM Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
e Member RIFM Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
f Member RIFM Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 81, Sao Paulo, CEP 05508-900, Brazil
g Member RIFM Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Wuerzburg, Germany
h Member RIFM Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
i Member RIFM Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
j Member of RIFM Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996-4500, USA
k Member of RIFM Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
l Member RIFM Expert Panel, The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan

ARTICLE INFO

Keywords:
Genotoxicity
Repeated dose, developmental, and reproductive toxicity
Skin sensitization
Phototoxicity/photoallergenicity
Local respiratory toxicity
Environmental safety

https://doi.org/10.1016/j.fct.2019.110570
Received 13 September 2018; Received in revised form 29 May 2019; Accepted 7 June 2019
Available online 09 June 2019
0278-6915/ © 2019 Elsevier Ltd. All rights reserved.
The existing information supports the use of this material as described in this safety assessment.

The Expert Panel for Fragrance Safety* concludes that this material is safe as described in this safety assessment.

This safety assessment is based on the RIFM Criteria Document (Api et al., 2015), which should be referred to for clarifications.

Each endpoint discussed in this safety assessment includes the relevant data that were available at the time of writing (version number in the top box is indicative of the date of approval based on a 2-digit month/day/year), both in the RIFM database (consisting of publicly available and proprietary data) and through publicly available information sources (e.g., SciFinder and PubMed). Studies selected for this safety assessment were based on appropriate test criteria, such as acceptable guidelines, sample size, study duration, route of exposure, relevant animal species, most relevant testing endpoints, etc. A key study for each endpoint was selected based on the most conservative endpoint value (e.g., PNEC, NOAEL, LOEL, and NESIL).

*The Expert Panel for Fragrance Safety is an independent body that selects its own members and establishes its own operating procedures. The Expert Panel is comprised of internationally known scientists that provide RIFM with guidance relevant to human health and environmental protection.

Summary: The existing information supports the use of this material as described in this safety assessment. Isovaleric acid was evaluated for genotoxicity, repeated dose toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, and environmental safety. Available data on isovaleric acid and data from read-across analog isobutyric acid (CAS # 79-31-2) show that isovaleric acid is not expected to be genotoxic. Data on isovaleric acid provide a calculated MOE > 100 for the developmental toxicity endpoint. The repeated dose toxicity, fertility, and local respiratory toxicity endpoints were evaluated using the TTC for a Cramer Class I material, and the exposure to isovaleric acid is below the TTC (0.03 mg/kg/day, 0.03 mg/kg/day, and 1.4 mg/day, respectively). The skin sensitization endpoint was completed using available data and the application of the DST for non-reactive materials (900 μg/cm²); exposure is below the DST. The phototoxicity/photoallergenicity endpoints were evaluated based on UV spectra; isovaleric acid is not expected to be phototoxic/photoallergenic. The environmental endpoints were evaluated; isovaleric acid was found not to be PBT as per the IFRA Environmental Standards, and its risk quotients, based on its current volume of use in Europe and North America (i.e., PEC/PNEC), are < 1.

Human Health Safety Assessment

Genotoxicity: Not expected to be genotoxic. (RIFM, 1999; RIFM, 2014a)

Repeated Dose Toxicity: No NOAEL available. Exposure is below the TTC.

Reproductive Toxicity: Developmental Toxicity: NOAEL = 600 mg/kg/day. Fertility: No NOAEL available. Exposure is below the TTC. (ECHA Dossier: Isovaleric acid, 2015)

Skin Sensitization: No safety concerns at current, declared use levels; exposure is below the DST.

Phototoxicity/Photoallergenicity: Not expected to be phototoxic/photoallergenic. (UV Spectra, RIFM Database)

Local Respiratory Toxicity: No NOAEC available. Exposure is below the TTC.
Environmental Safety Assessment

Hazard Assessment:
- Persistence: Screening-level: 3.3 (BIOWIN 3)
- Bioaccumulation: Screening-level: 3.16 L/kg
- Ecotoxicity: Screening-level: Fish LC50: 382.2 mg/L
Conclusion: Not PBT or vPvB as per IFRA Environmental Standards

Risk Assessment:
- Screening-level: PEC/PNEC (North America and Europe) < 1
- Critical Ecotoxicity Endpoint: Fish LC50: 382.2 mg/L
RIFM PNEC is: 0.3822 μg/L

- Revised PEC/PNECs (2015 IFRA VoU): Not North America and Europe: Not applicable; cleared at screening-level

1. Identification

1. Chemical Name: Isovaleric acid
2. CAS Registry Number: 503-74-2
3. Synonyms: Butanoic acid, 3-methyl-; Delphinic acid; 3-Methylbutanoic acid; β-Methylbutyric acid; 3-Methylbutyric acid; \(\text{C}_5\text{H}_{10}\text{O}_2 \)
4. Molecular Formula: \(\text{C}_5\text{H}_{10}\text{O}_2 \)
5. Molecular Weight: 99.17
6. RIFM Number: 907
7. Stereochemistry: No isomeric center present and no isomers possible.

2. Physical data

1. Boiling Point: 175 °C (FMA Database), 175.25 °C (EPI Suite)
2. Flash Point: 80 °C (GHS), 159 °F; CC (FMA Database)
3. Log \(K_{\text{ow}} \): 1.49 (EPI Suite)
4. Melting Point: 3.61 °C (EPI Suite)
5. Water Solubility: 29240 mg/L (EPI Suite)
6. Specific Gravity: 0.937 (FMA Database)
7. Vapor Pressure: 0.798 mm Hg @ 20 °C (EPI Suite v4.0), 0.3 mm Hg 20 °C (FMA Database), 1.14 mm Hg @ 25 °C (EPI Suite)
8. UV Spectra: No significant absorbance between 290 and 700 nm; molar absorption coefficient is below the benchmark (1000 L mol⁻¹ cm⁻¹)
9. Appearance/Organoleptic: Arctander, Volume II, 1969: Colorless liquid; very diffusive, acid-acrid, in moderate dilution cheasy, unpleasant odor of poor tenacity—although the difficulty in removing minute traces from the human skin and the power of the odor give impression of considerable tenacity; in extreme dilution the odor becomes more agreeable, herbaceous, more dry than the odor of n-valeric acid

3. Exposure to fragrance ingredient

1. Volume of Use (worldwide band): 1–10 metric tons per year (IFRA, 2015)
2. 95th Percentile Concentration in Hydroalcohols: 0.00012% (RIFM, 2017)
3. Inhalation Exposure*: 0.0000054 mg/kg/day or 0.00040 mg/day (RIFM, 2017)
4. Total Systemic Exposure**: 0.000082 mg/kg/day (RIFM, 2017)

*95th percentile calculated exposure derived from concentration survey data in the Creme RIFM Aggregate Exposure Model (Comiskey et al., 2015; Safford et al., 2015a; Safford et al., 2017; and Comiskey et al., 2017).
**95th percentile calculated exposure; assumes 100% absorption unless modified by dermal absorption data as reported in Section IV. It is derived from concentration survey data in the Creme RIFM Aggregate Exposure Model and includes exposure via dermal, oral, and inhalation routes whenever the fragrance ingredient is used in products that include these routes of exposure (Comiskey et al., 2015; Safford et al., 2015a; Safford et al., 2017; and Comiskey et al., 2017).

4. Derivation of systemic exposure

1. Dermal: Assumed 100%
2. Oral: Assumed 100%
3. Inhalation: Assumed 100%

5. Computational toxicology evaluation

1. Cramer Classification: Class I, Low

<table>
<thead>
<tr>
<th>Expert Judgment</th>
<th>Toxtree v</th>
<th>OECD QSAR Toolbox v</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

2. Analogs Selected:
 a. Genotoxicity: Isobutyric acid (CAS # 79-31-2)
 b. Repeated Dose Toxicity: None
 c. Reproductive Toxicity: None
 d. Skin Sensitization: None
 e. Phototoxicity/Photoallergenicity: None
 f. Local Respiratory Toxicity: None
 g. Environmental Toxicity: None
 3. Read-across Justification: See Appendix below

6. Metabolism

Isovaleric acid is a branched chain aliphatic saturated carboxylic acid, which can be rapidly absorbed from the gastrointestinal tract and metabolized to innocuous products in the body. In an in vivo study on Sprague Dawley rats, 4,4-C\textsubscript{13},1,14\textsubscript{14C} isovaleric acid administered through feed was completely utilized in the production of cholesterol and fatty acids.

In general, straight or branched chain carboxylic acids undergo β-oxidation. Since isovaleric acid contains a methyl group in position 3, α-oxidation predominates the breakdown into short-chain fragments that can be completely metabolized to carbon-dioxide (CO₂) through acetyl-CoA. It is also established that isovaleric acid is ketogenic and forms a carboxyl moiety and an isopropyl moiety that ultimately undergo cholesterol or fatty acid synthesis.

Isovaleric acid is present as an endogenous metabolite that is converted to acetooacetate and acetyl-CoA and is not expected to accumulate in humans. (JECFA, 1998; HSDB information on Isovaleric acid (accessed on 04/26/2018); ECHA REACH Dossier on Isovaleric acid (accessed on 04/26/2018); Zabin and Bloch, 1951) (see Figs. 1 and 2).

Additional References: None.
7. Natural occurrence (discrete chemical) or composition (NCS)

Isovaleric acid is reported to occur in the following foods by the VFC*:

Anise brandy.
Apple brandy (calvados).
Apple fresh (Malus species).
Apple processed (Malus species).
Apricot (Prunus armeniaca L.).
Arctic bramble (Rubus arcticus L.).
Artocarpus species.
Beef.
Beer.
Black currants (Ribes nigrum L.).
Blue cheeses.
Bread and bread preferment.
Brown algae.
Buckwheat.
Cape gooseberry (Physalis peruviana L.).
Capsicum species.
Cardamom (Ellettaria cardamomum Maton.)
Cashew apple (Anacardium occidentale).
Cheddar cheese.
Cheese, various types.
Cherimoya (Annona cherimolia Mill.)
Cherry (Prunus avium [sweet], pr. Cerasus [sour]).
Chicken.
Chinese liquor (baijiu).
Chinese quince (Pseudocydonia sinensis Schneid.)
Cider (apple wine).
Cinnamonum species.
Citrus fruits.
Cocoa category.
Coffee.
Crowberry (Empetrum nigrum Coll.)
Elderberry (Sambucus nigra L.)
Filbert, hazelnut (Corylus avellano).
Fish.
Grape (Vitis species).
Grape brandy.
Guava and feyoa
Honey.
Hop (Humulus lupulus).
Katsuobushi (dried bonito).
Kumazasa (Sasa albo-marginata).
Lamb and mutton.
Licorice (Glycyrrhiza species).
Litchi (Litchi chinensis Sonn.)
Lobster.
Loganberry juice (Rubus ursinus var. Loganobaccus).
Lovage (Levisticum officinale Koch.)
Maize (Zea mays L.)
Malt.
Mangifera species.
Marula (Sclerocarya birrea subsp. Caffra.)
Mate (Ilex paraguayensis).
Mentha oils.
Milk and milk products.
Mulberry spirit (Mouro).
Mushroom.
Mussel.
Mustard (Brassica species).
Oats (Avena sativa L.).
Olive (Olea europaea).
Papaya (Carica papaya L.).
Passion fruit (Passiflora species).
Peach (Prunus persica L.).
Peanut (Arachis hypogaea L.).
Pear brandy.
Peas (Pisum sativum L.).
Pepper (Piper nigrum L.).
Pineapple (Ananas comosus).
Pistachio nut (Pistacia vera).
Plum brandy.
Potato (Solanum tuberosum L.).
Potato chips (American).
Pumpkin seed oil.
Rapeseed.
Raspberry, blackberry, and boysenberry.
Rice (Oryza sativa L.).
Rice cake.
Rooibos tea (Aspalathus linearis).
Rum.
Rye bread.
Sake.
Salami.
Sea buckthorn (Hippophaë rhamnoides L.).
Sherry.
Shouyu (fermented soya hydrolysate).
Shrimps (prawn).
Soybean (Glycine max. L. Merr.).
Starfruit (Averrhoa carambola L.).
Strawberry (Fragaria species).
Sugar molasses.
Sukiyaki.
Sweet marjoram (Origanum majorana L.).
Swiss cheeses.
Tarragon (Artemisia dracunculus L.).
Tea.
Tomato (Lycopersicon esculentum Mill.).
Trassi (cooked).
Truffle.
Vanilla.
Vinegar.
Wheat bread.
Whey protein hydrolysate.
Whisky.
Wine.

8. IFRA standard

None.

9. REACH dossier

Available; accessed 04/20/18.

10. Summary

10.1. Human health endpoint summaries

10.1.1. Genotoxicity

Based on the current existing data, isovaleric acid does not present a concern for genotoxicity.

10.1.1.1. Risk assessment. Isovaleric acid was assessed in the BlueScreen assay and found positive for both cytotoxicity (positive: < 80% relative cell density) and genotoxicity in the absence of metabolic activation and negative for genotoxicity and cytotoxicity in the presence of metabolic activation (RIFM, 2014b). BlueScreen is a screening assay that assesses genotoxic stress through human-derived gene expression. While the BlueScreen assay on the target material showed positive results, data from additional assays on a more reactive read-across material were considered to fully assess the potential mutagenic or clastogenic effects of the target material.

The mutagenic activity of isovaleric acid has been evaluated in a bacterial reverse mutation assay conducted in compliance with GLP regulations and in accordance with OECD TG 471 using the standard plate incorporation method. *Salmonella typhimurium* strains TA98, TA100, TA1535, TA1537, and TA102 were treated with isovaleric acid in dimethyl sulfoxide (DMSO) at concentrations up to 5000 μg/plate. No increases in the mean number of revertant colonies were observed at any tested concentration in the presence or absence of S9 (RIFM, 1999).

Under the conditions of the study, isovaleric acid was not mutagenic in the Ames test.

There are no data assessing the clastogenic activity of isovaleric acid. However, read-across can be made to isobutyric acid (CAS # 79-31-2; see Section V). The clastogenic activity of isobutyric acid was evaluated in an *in vitro* micronucleus test conducted in compliance with GLP regulations and in accordance with OECD TG 487. Human peripheral blood lymphocytes were treated with isobutyric acid in minimal essential medium (MEM) at concentrations up to 880 μg/mL in the presence and absence of metabolic activation (S9) for 4 h and in the absence of metabolic activation for 24 h. Isobutyric acid did not induce binucleated cells with micronuclei when tested up to the maximum concentration in either the presence or absence of an S9 activation system (RIFM, 2014a). Under the conditions of the study, isobutyric acid was considered to be non-clastogenic in the *in vitro* micronucleus test, and this can be extended to isovaleric acid.

Based on the data available, isovaleric acid does not present a concern for genotoxic potential.

Additional References: Heck et al., 1989; RIFM, 1982a; RIFM, 1982b; RIFM, 1983; RIFM, 2015.

10.1.2. Repeated dose toxicity

There are insufficient repeated dose toxicity data on isovaleric acid or on any read-across materials. The total systemic exposure to isovaleric acid is below the TTC for the repeated dose toxicity endpoint of a Cramer Class I material at the current level of use.

10.1.2.1. Risk assessment. There are insufficient repeated dose toxicity data on isovaleric acid or on any read-across materials. In a single-dose 90-day subchronic study (testing guidelines unspecified) using male Sprague Dawley rats (6/group), neutralized isovaleric acid (isovaleric acid content: 40% w/w) was administered through the diet at concentrations of 0 (control) or 5% (2500 mg/kg/day). No treatment-related effects were reported in any parameter evaluated. Due to its limitations, this study is used as weight of evidence, and following the JECFA guidelines for the preparation of toxicological working papers on food additives, the NOAEL for 40% isovaleric acid was considered to be 1000 mg/kg/day. (Amoore et al., 1978; data also available at JECFA, 1998; EFSA, 2012; HSDB information on Isovaleric acid; and ECHA Dossier: Isovaleric acid). The total systemic exposure to isovaleric acid (0.082 μg/kg/day) is below the TTC for a Cramer Class I material for the repeated dose toxicity endpoint (30 μg/kg/day; Kroes et al., 2007) at the current level of use.

Additional References: RIFM, 1957 RIFM, 1957.

10.1.3. Reproductive Toxicity

The margin of exposure for isovaleric acid is adequate for the developmental toxicity endpoint at the current level of use.

There are insufficient fertility data on isovaleric acid or any read-across materials. The total systemic exposure to isovaleric acid is below the TTC for the fertility endpoint of a Cramer Class I material at the current level of use.

10.1.3.1. Risk assessment. There are sufficient developmental toxicity data on isovaleric acid that can be used to support the developmental toxicity endpoint. In a developmental toxicity study (GLP compliant and similar to OECD 414), which was performed on Wistar rats (10/group), isovaleric acid (99.9% pure) was administered through oral gavage at a dose level of 600 mg/kg/day. All animals were treated during gestation period days 6–19. Salivation in all dams after treatment and local irritation of the larynx and upper and lower respiratory tract were reported; these findings were significant but not severe. No treatment-related effects were reported in any parameter for both dams and fetuses. The NOAEL for maternal, developmental toxicity, and teratogenicity was considered to be 600 mg/kg/day, based on the absence of any treatment-related effects (ECHA Dossier: Isovaleric acid). Since this was a single-dose study with no treatment-related adverse effects observed, a NOAEL of 600 mg/kg/day was considered for the developmental toxicity endpoint. Therefore, the isovaleric acid MOE for the developmental toxicity endpoint can be calculated by dividing the isovaleric acid NOAEL in mg/kg/day by the total systemic exposure to isovaleric acid, 600/0.000082 or 7317073.

In addition, the total systemic exposure to isovaleric acid (0.082 μg/kg/day) is below the TTC (30 μg/kg/day; Kroes et al., 2007; Laufersweiler et al., 2012) for the developmental toxicity endpoint of a Cramer Class I material at the current level of use.

There are insufficient fertility data on isovaleric acid or on any read-across materials that can be used to support the fertility endpoint. The total systemic exposure to isovaleric acid (0.082 μg/kg/day) is below the TTC (30 μg/kg/day; Kroes et al., 2007; Laufersweiler et al., 2012) for the fertility endpoint of a Cramer Class I material at the current level of use.

Additional References: Heck et al., 1989; RIFM, 1982a; RIFM, 1982b; RIFM, 1983; RIFM, 2015.

Literature Search and Risk Assessment Completed On: 05/09/18.
of use.

Additional References: None.

10.1.4. Skin sensitization

Based on existing data and the application of DST, isovaleric acid does not present a safety concern for skin sensitization under the current, declared levels of use.

10.1.4.1. Risk assessment. The chemical structure of this material indicates that it would not be expected to react with skin proteins (Roberts et al., 2007; Toxtree 2.6.13; OECD toolbox v3.4). No predictive skin sensitization studies are available for isovaleric acid. In a human maximization test, no skin sensitization reactions were observed (RIFM, 1977). Acting conservatively, due to the limited data, additional references (Roberts et al., 2007; Toxtree 2.6.13; OECD toolbox v3.4). No predictive skin sensitization studies are available for isovaleric acid. In a human maximization test, no skin sensitization reactions were observed (RIFM, 1977). Acting conservatively, due to the limited data, no significant skin sensitization reactions were observed (Safford, 2008; Safford et al., 2011; Safford et al., 2015b; Roberts et al., 2015). The current exposure from the 95th percentile concentration is below the DST for non-reactive materials when evaluated in all QRA categories. Table 1 provides the maximum acceptable concentrations for isovaleric acid that present no appreciable risk for skin sensitization based on the non-reactive DST. These concentrations are not limits; they represent acceptable concentrations based on the DST approach.

Additional References: None.

Literature Search and Risk Assessment Completed On: 05/09/18.

10.1.5. Phototoxicity/photoallergenicity

Based on the available UV/Vis spectra, isovaleric acid would not be expected to present a concern for phototoxicity or photoallergenicity.

10.1.5.1. Risk assessment. There are no phototoxicity studies available for isovaleric acid in experimental models. UV/Vis absorption spectra indicate no significant absorption between 290 and 700 nm. The corresponding molar absorption coefficient is well below the Cramer Class I TTC value for phototoxicity. There are no phototoxicity studies available for isovaleric acid. Based on the available UV/Vis spectra, isovaleric acid would not be expected to present a concern for phototoxicity. There are no phototoxicity studies available for isovaleric acid in experimental models. UV/Vis absorption spectra indicate no significant absorbance between 290 and 700 nm. The corresponding molar absorption coefficient is below the Cramer Class I TTC value for phototoxicity.

10.1.5.2. UV spectra analysis. UV/Vis absorption spectra (OECD TG 101) were obtained. The spectra indicate no significant absorbance in the range of 290–700 nm. The molar absorption coefficient is below the benchmark of concern for phototoxic effects, 1000 L mol⁻¹ cm⁻¹ (Henry et al., 2009).

Additional References: None.

10.1.6. Local Respiratory Toxicity

The margin of exposure could not be calculated due to lack of appropriate data. The exposure level for isovaleric acid is below the Cramer Class I TTC value for inhalation exposure local effects.

10.1.6.1. Risk assessment. There are no inhalation data available on isovaleric acid. Based on the Cramer RIFM Model, the inhalation exposure is 0.0004 mg/day. This exposure is 3500 times lower than the Cramer Class I TTC value of 1.4 mg/day (based on human lung weight of 650 g; Carthew et al., 2009); therefore, the exposure at the current level of use is deemed safe.

Additional References: None.

10.2. Environmental endpoint summary

10.2.1. Screening-level assessment

A screening-level risk assessment of isovaleric acid was performed following the RIFM Environmental Framework (Salvito et al., 2002), which provides 3 tiered levels of screening for aquatic risk. In Tier 1, only the material’s regional VoU, its log K₅₀, and its molar weight are needed to estimate a conservative risk quotient (RQ), expressed as the ratio Predicted Environmental Concentration/Predicted No Effect Concentration (PEC/PNEC). A general QSAR with a high uncertainty factor applied is used to predict fish toxicity, as discussed in Salvito et al. (2002). In Tier 2, the RQ is refined by applying a lower uncertainty factor to the PNEC using the ECOSAR model (US EPA, 2012b), which provides chemical class-specific ecotoxicity estimates. Finally, if necessary, Tier 3 is conducted using measured biodegradation and ecotoxicity data to refine the RQ, thus allowing for lower PNEC uncertainty factors. The data for calculating the PEC and PNEC for this safety assessment are provided in the table below. For the PEC, the range from the most recent IFRA Volume of Use Survey is reviewed. The PEC is then calculated using the actual regional tonnage, not the extremes of the range. Following the RIFM Environmental Framework,

<table>
<thead>
<tr>
<th>IFRA Category</th>
<th>Description of Product Type</th>
<th>Maximum Acceptable Concentrations in Finished Products Based on Non-reactive DST</th>
<th>Reported 95th Percentile Use Concentrations in Finished Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Products applied to the lips</td>
<td>0.07%</td>
<td>0.00%b</td>
</tr>
<tr>
<td>2</td>
<td>Products applied to the axillae</td>
<td>0.02%</td>
<td>0.00%b</td>
</tr>
<tr>
<td>3</td>
<td>Products applied to the face using fingertips</td>
<td>0.41%</td>
<td>0.00%b</td>
</tr>
<tr>
<td>4</td>
<td>Fine fragrance products</td>
<td>0.39%</td>
<td>0.00%b</td>
</tr>
<tr>
<td>5</td>
<td>Products applied to the face and body using the hands (palms), primarily leave-on</td>
<td>0.10%</td>
<td>0.00%b</td>
</tr>
<tr>
<td>6</td>
<td>Products with oral and lip exposure</td>
<td>0.23%</td>
<td>0.00%b</td>
</tr>
<tr>
<td>7</td>
<td>Products applied to the hair with some hand contact</td>
<td>0.79%</td>
<td>0.00%b</td>
</tr>
<tr>
<td>8</td>
<td>Products with significant ano-genital exposure</td>
<td>0.04%</td>
<td>No Dataa</td>
</tr>
<tr>
<td>9</td>
<td>Products with body and hand exposure, primarily rinse-off</td>
<td>0.75%</td>
<td>0.00%c</td>
</tr>
<tr>
<td>10</td>
<td>Household care products with mostly hand contact</td>
<td>2.70%</td>
<td>0.01%</td>
</tr>
<tr>
<td>11</td>
<td>Products with intended skin contact but minimal transfer of fragrance to skin from inert substrate</td>
<td>1.50%</td>
<td>No Dataa</td>
</tr>
<tr>
<td>12</td>
<td>Products not intended for direct skin contact, minimal or insignificant transfer to skin</td>
<td>Not Restricted</td>
<td>0.06%</td>
</tr>
</tbody>
</table>

Note.

* For a description of the categories, refer to the IFRA/RIFM Information Booklet.

b Negligible exposure (< 0.01%).

c Fragrance exposure from these products is very low. These products are not currently in the Creme RIFM Aggregate Exposure Model.
isovaleric acid was identified as a fragrance material with no potential to present a possible risk to the aquatic environment (i.e., its screening-level PEC/PNEC < 1).

A screening-level hazard assessment using EPI Suite v4.11 (US EPA, 2012a) did not identify isovaleric acid as possibly persistent or bioaccumulative based on its structure and physical-chemical properties. This screening-level hazard assessment considers the potential for a material to be persistent and bioaccumulative and toxic, or very persistent and very bioaccumulative as defined in the Criteria Document (Api et al., 2015). As noted in the Criteria Document, the screening criteria applied are the same as those used in the EU for REACH (ECHA, 2012). For persistence, if the EPI Suite model BIOWIN 3 predicts a value < 2.2 and either BIOWIN 2 or BIOWIN 6 predicts a value < 0.5, then the material is considered potentially persistent. A material would be considered potentially bioaccumulative if the EPI Suite model BCFBAF predicts a fish BCF ≥ 2000 L/kg. Ecotoxicity is determined in the above screening-level risk assessment. If, based on these model outputs (Step 1), additional assessment is required, a WoE-based review is then performed (Step 2). This review considers available data on the material’s physical-chemical properties, environmental fate (e.g., OECD Guideline biodegradation studies or die-away studies), fish bioaccumulation, and higher-tier model outputs (e.g., US EPA’s BIOWIN and BCFBAF found in EPI Suite v4.11).

10.2.2. Risk assessment
Based on the current Volume of Use (2015), isovaleric acid presents no risk to the aquatic compartment in the screening-level assessment. Biodegradation: No data available. Ecotoxicity: No data available. Other available data: Isovaleric acid has been registered for REACH with no additional data at this time.

10.2.3. Risk assessment refinement
Ecotoxicological data and PNEC derivation (all endpoints reported in mg/L; PNECs in μg/L). Endpoints used to calculate PNEC are underlined.

| Exposure Information and PEC calculation (following RIFM Environmental Framework: Salvito et al., 2002). |
|---------------------------------|-------------------|-------------------|
| Exposure | Europe (EU) | North America (NA) |
| Log K_{ow} Used | 1.49 | 1.49 |
| Biodegradation Factor Used | 0 | 0 |
| Dilution Factor | 3 | 3 |
| Regional Volume of Use Tonnage Band | < 1 | < 1 |
| Risk Characterization: PEC/PNEC | < 1 | < 1 |

Based on available data, the RQ for this material is < 1. No further assessment is necessary.

The RIFM PNEC is 0.3822 μg/L. The revised PEC/PNECs for EU and NA are: not applicable. The material was cleared at screening-level and therefore does not present a risk to the aquatic environment at the current reported volumes of use.

11. Literature Search
- RIFM Database: Target, Fragrance Structure Activity Group materials, other references, JECFA, CIR, SIDS
- ECHA: http://echa.europa.eu/
- NTP: https://ntp.niehs.nih.gov/
- OECD Toolbox
- SciFinder: https://scifinder.cas.org/scifinder/view/scifinder/scifinderExplore.jsf
- EPA ACToR: https://actor.epa.gov/actor/home.xhtml
- US EPA HPVIS: https://ofmpub.epa.gov/opthpv/public_search.publicdetails?submission_id=24959241&ShowComments=Yes&qslr=null&recordcount=0&User_title=DetailQuery%20Results&EndPointRpt=Y#submission
- Google: https://www.google.com
- ChemiDplus: https://chem.nlm.nih.gov/chemidplus/

Search keywords: CAS number and/or material names.

*Information sources outside of RIFM’s database are noted as appropriate in the safety assessment. This is not an exhaustive list. The links listed above were active as of 08/27/2018.

Conflicts of interest
The authors declare that they have no conflicts of interest.

Declaration of interests
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome. RIFM staff are employees of the Research Institute for Fragrance Materials, Inc. (RIFM). The Expert Panel receives a small honorarium for time spent reviewing the subject work.
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.fct.2019.110570.

Appendix

Read-across Justification

Methods

The read-across analogs were identified following the strategy for structuring and reporting a read-across prediction of toxicity as described in Schultz et al. (2015). The strategy is also consistent with the guidance provided by OECD within Integrated Approaches for Testing and Assessment (OECD, 2015) and the European Chemical Agency read-across assessment framework (ECHA, 2016).

• First, materials were clustered based on their structural similarity. Second, data availability and data quality on the selected cluster were examined. Third, appropriate read-across analogs from the cluster were confirmed by expert judgment.
• Tanimoto structure similarity scores were calculated using FCFC4 fingerprints (Rogers and Hahn, 2010).
• The physical–chemical properties of the target substance and the read-across analogs were calculated using EPI Suite v4.11 (US EPA, 2012a).
• Jmax values were calculated using RIFM’s Skin Absorption Model (SAM). The parameters were calculated using the consensus model (Shen et al., 2014).
• DNA binding, mutagenicity, genotoxicity alerts, and oncologic classification predictions were generated using OECD QSAR Toolbox v4.2 (OECD, 2018).
• ER binding and repeat dose categorization were generated using OECD QSAR Toolbox v4.2 (OECD, 2018).
• Developmental toxicity was predicted using CAESAR v2.1.7 (Cassano et al., 2010), and skin sensitization was predicted using Toxtree 2.6.13.
• Protein binding was predicted using OECD QSAR Toolbox v4.2.

<table>
<thead>
<tr>
<th>Target Material</th>
<th>Read-across</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Name</td>
<td>Isobutyric acid</td>
</tr>
<tr>
<td>CAS No.</td>
<td>79-31-2</td>
</tr>
<tr>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Similarity (Tanimoto Score)</td>
<td>0.59</td>
</tr>
<tr>
<td>Read-across Endpoint</td>
<td>Genotoxicity</td>
</tr>
<tr>
<td>Formula</td>
<td>C4H8O2</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>88.11</td>
</tr>
<tr>
<td>Melting Point ('C, EPI Suite)</td>
<td>8.29</td>
</tr>
<tr>
<td>Boiling Point ('C, EPI Suite)</td>
<td>153.79</td>
</tr>
<tr>
<td>Vapor Pressure (Pa @ 25 °C, EPI Suite)</td>
<td>436</td>
</tr>
<tr>
<td>Log Kow (KOWWIN v1.68 in EPI Suite)</td>
<td>0.94</td>
</tr>
<tr>
<td>Water Solubility (mg/L @ 25 °C, WSKOW v1.42 in EPI Suite)</td>
<td>3228.490</td>
</tr>
<tr>
<td>Jmax (μg/cm²/h, SAM)</td>
<td>3228.490</td>
</tr>
<tr>
<td>Henry’s Law (Pa·m³/mol, Bond Method, EPI Suite)</td>
<td>9.78E-002</td>
</tr>
<tr>
<td>Genotoxicity</td>
<td>Non-genotoxic</td>
</tr>
<tr>
<td>DNA Binding (OASIS v1.4, QSAR Toolbox v3.4)</td>
<td>No alert found</td>
</tr>
<tr>
<td>DNA Binding (OECD QSAR Toolbox v3.4)</td>
<td>No alert found</td>
</tr>
<tr>
<td>Carcinogenicity (ISS)</td>
<td>Non-carcinogen (moderate reliability)</td>
</tr>
<tr>
<td>DNA Binding (Ames, MN, CA, OASIS v1.1)</td>
<td>No alert found</td>
</tr>
<tr>
<td>In Vitro Mutagenicity (Ames, ISS)</td>
<td>No alert found</td>
</tr>
<tr>
<td>In Vivo Mutagenicity (Micronucleus, ISS)</td>
<td>Not classified</td>
</tr>
<tr>
<td>Oncologic Classification</td>
<td>Not classified</td>
</tr>
<tr>
<td>Metabolism</td>
<td>See Supplemental Data 1</td>
</tr>
<tr>
<td>Rat Liver S9 Metabolism Simulator and Structural Alerts for Metabolites (OECD QSAR Toolbox v4.2)</td>
<td>No metabolites</td>
</tr>
</tbody>
</table>

Summary

There are insufficient toxicity data on isovaleric acid (CAS # 503-74-2). Hence, in silico evaluation was conducted to determine read-across analogs for this material. Based on structural similarity, reactivity, physical–chemical properties, and expert judgment, isobutyric acid (CAS # 79-31-2) was identified as a read-across material with sufficient data for toxicological evaluation.

Conclusions

• Isobutyric acid (CAS # 79-31-2) was used as a read-across analog for the target material isovaleric acid (CAS # 503-74-2) for the genotoxicity endpoint.
The target substance and the read-across analog are structurally similar and belong to the class of branched, saturated organic acids. The only difference between the target substance and the read-across analog is that the read-across analog is 1 carbon smaller compared to the target substance. This structural difference is toxicologically insignificant. Similarity between the target substance and the read-across analog is indicated by the Tanimoto score. Differences between the structures that affect the Tanimoto score are toxicologically insignificant. The physical-chemical properties of the target substance and the read-across analog are sufficiently similar to enable comparison of their toxicological properties. According to the OECD QSAR Toolbox v4.2, structural alerts for toxicological endpoints are consistent between the target substance and the read-across analog. Data described in the genotoxicity section are consistent with in silico alerts. The target substance and the read-across analog are expected to be metabolized similarly, as shown by the metabolism simulator. The structural alerts for the endpoints evaluated are consistent between the metabolites of the read-across analog and the target material.

References

