Contents lists available at ScienceDirect

Food and Chemical Toxicology

CrossMark

journal homepage: www.elsevier.com/locate/foodchemtox

An in silico skin absorption model for fragrance materials

Jie Shen ^a, Lambros Kromidas ^{a,*}, Terry Schultz ^b, Sneha Bhatia ^a

^a Research Institute for Fragrance Materials, Inc., 50 Tice Blvd., Woodcliff Lake, NJ 07677, USA ^b College of Veterinary Medicine, The University of Tennessee, 2407 River Dr., Knoxville, TN 37996, USA

ARTICLE INFO

Article history: Received 6 August 2014 Accepted 23 September 2014 Available online 5 October 2014

Keywords: Toxicology QSAR Computational Topical Safety Dermal

ABSTRACT

Fragrance materials are widely used in cosmetics and other consumer products. The Research Institute for Fragrance Materials (RIFM) evaluates the safety of these ingredients and skin absorption is an important parameter in refining systemic exposure. Currently, RIFM's safety assessment process assumes 100% skin absorption when experimental data are lacking. This 100% absorption default is not supportable and alternate default values were proposed. This study aims to develop and validate a practical skin absorption model (SAM) specific for fragrance material. It estimates skin absorption based on the methodology proposed by Kroes et al. SAM uses three default absorption values based on the maximum flux (J_{max}) – namely, 10%, 40%, and 80%. J_{max} may be calculated by using QSAR models that determine octanol/ water partition coefficient (K_{ow}), water solubility (S) and permeability coefficient (K_p). Each of these QSAR models was refined and a semi-quantitative mechanistic model workflow is presented. SAM was validated with a large fragrance-focused data set containing 131 materials. All resulted in predicted values fitting the three-tiered absorption scenario based on J_{max} ranges. This conservative SAM may be applied when fragrance material lack skin absorption data.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Skin absorption is a very important parameter for safety assessment, especially for topically applied fragrance materials. Chemicals in contact with the skin have the potential to be absorbed into the skin and enter the systemic circulation. To enter the systemic circulation, the chemical must reach the underlying dermis replete with capillaries. Skin absorption occurs by passive diffusion through the epidermis and directly by sweat glands and hair follicles (Ngo et al., 2010). Chemicals that penetrate no further than the epidermis are destined to be eliminated by desquamation and thus not reach the systemic circulation (Sundberg et al., 2012). Therefore, determining the penetration of a substance is crucial for assessing systemic exposure.

E-mail address: lkromidas@rifm.org (L. Kromidas).

Usually, skin absorption of a target material is obtained experimentally in vitro and/or in vivo based on different species, including pig, monkey and human subjects. In the absence of experimental skin absorption data, it is customary, by safety assessors, to extrapolate via read-across structural analogs or use default values. The European Commission (EC) guidance on dermal absorption, proposed two default values - 100% or 10% if the substance of interest is very lipophilic or very hydrophilic (i.e., $\log K_{ow} < -1$ or >+4) with a MW >500 (European Commission, 2004). For pesticides, the European Food Safety Authority (EFSA) replaced these EC default values with 25% for liquid concentrates and 75% when diluting them for spraying (EFSA Panel on Plant Protection Products and their Residues, 2011, 2012). More recently however, Aggarwal et al. (2014) analyzed human skin absorption data on pesticides that were available until 2012 and proposed a 6% default value for liquid concentrates and 30% for spray dilutions.

Currently, in RIFM's (Research Institute for Fragrance Materials) safety assessment process, a 100% default absorption value is applied for materials without experimental data (Belsito et al., 2007, 2011, 2012a, 2012b, 2012c). However, as discussed by Kroes et al. (2007), "the assumption of 100% absorption is not scientifically supportable" and, based on their analysis of 15 cosmetic ingredients and 62 chemicals in the EDETOX database (Williams, 2004), they proposed three default skin absorption values for cosmetic ingredients. Based on their derivation and analysis, the three different default skin absorption values proposed were based on the maximum flux (J_{max} , in unit of $\mu g/cm^2/h$). J_{max} is the theoretically achieved dose, based on Fick's first law of diffusion (Fick, 1855), when a material

Abbreviations: RIFM, Research Institute for Fragrance Materials; SAM, skin absorption model; QSAR, Quantitative Structure–Activity Relationship; EC, European Commission; EFSA, European Food Safety Authority; EDETOX, Evaluations and Predictions of Dermal Absorption of Toxic Chemicals; USEPA, United States Environmental Protection Agency; ACTOR, Aggregated Computational Toxicology Resource; SE, standard error; OECD, Organisation for Economic Co-operation and Development; RMSE, root-mean-square deviation; TTC, Threshold of Toxicological Concern; MOE, margin of exposure; MOS, margin of safety; CAESAR, Computer Assisted Evaluation of industry chemical Substances According to Regulations.

^{*} Corresponding author. Research Institute for Fragrance Materials, Inc., 50 Tice Blvd., Woodcliff Lake, NJ 07677, USA. Tel.: +1 201 689 8089, ext, 130; fax: 1-201-689-8090.

is maintained in a saturated solution or at steady state equilibrium whose flux describes the amount of permeant per unit time and area (i.e., $\mu g/cm^2/h$) (Magnusson et al., 2004). J_{max} is independent of the formulation in which the material contacts the skin and is a constant value when the formulation does not change the skin barrier (Kroes et al., 2007). Based on J_{max} , the default absorption values proposed were as follows:

- Material with J_{max} ≤0.1 μg/cm²/h should be assigned a skin absorption default value of less than 10%.
- If the J_{max} value is >0.1 µg/cm²/h but $\leq 10 µg/cm^2/h$, the default skin absorption assigned did not exceed 40%.
- If a material had a J_{max} of >10 µg/cm²/h, the default skin absorption assigned was no more than 80%.

The three default skin absorption percentages were proposed to represent low absorbed, medium absorbed, and high absorbed material. These default values were derived from a broad range of 15 cosmetic ingredients and considered several worst-case assumptions such as, (i) cosmetic ingredients are present at saturation levels, (ii) no depletion of the ingredient occurs during the exposure period, (iii) the formulation does not affect the skin barrier, and (iv) by using the maximal flux over the entire exposure time, the lower flux during the lag time is ignored (Kroes et al., 2007). In another study, Guy proved that the skin absorption of chemicals may be classified by their calculated J_{max} (Guy, 2010). Using the same model, the J_{max} of 20 fragrance materials were calculated and 16 of them were taken one step further to calculate their absorption percentage by including the applied dose, area and time. Over-prediction was observed in 14 materials and therefore, this approach could also be considered an extreme estimation of absorption.

Based on the abovementioned studies, it is apparent that the key to determining a substance's default absorption value is to get an accurate J_{max} . Centered on this reasoning, we propose an *in silico* semiquantitative mechanistic model for assigning the same default skin absorption values as proposed by Kroes et al. (2007), but specifically constructed around the fragrance material (Fig. 1). As we will show, their overall methodology can be applied to derive similar absorption values for RIFM's fragrance materials that lack experimental skin absorption data, provided we tailor the model to specifically fit a defined set of fragrance material physicochemical parameters. Our mechanistic model was validated with a fragrance-focused data set containing 131 materials. All resulted in predicted values fitting the proposed three-tiered SAM based on *J*_{max} ranges.

2. Methodology development and data sets

2.1. Defining the chemical space of fragrance materials

Getting insight into the chemical space of fragrance materials and where this space is located in the chemical universe was instructive for us to get the big picture and develop a fragrancefocused SAM. Herein, 2120 fragrance materials with known chemical structure in RIFM database were reviewed. The fragrance chemical space was profiled using three physicochemical properties that significantly influence the overall absorption of a topically applied substance, namely, molecular weight (MW), **log** *K*_{ow} (octanol/ water partition coefficient) and water solubility (*S*). For perspective, these were compared to more than half a million industry chemicals from the United States Environmental Protection Agency (USEPA) ACTOR database (Judson et al., 2012).

As shown in Fig. 2, the *MW*, **log** K_{ow} and **log** S values of ~500,000 industry chemicals from USEPA ACTOR database are calculated using EPI Suite (USEPA) and plotted to represent the chemical universe (Fig. 2A, blue dots). The same parameters of 2120 fragrance materials are also calculated and plotted in the same chart (Fig. 2A, red dots). Clearly, not only the number of fragrance material is significantly small, but the fragrance space is limited. Further analysis indicates that more than 99% of fragrance materials gave a *MW* ranging from 30 to 330 (Fig. 2B), a **log** K_{ow} from -1 to 9 (Fig. 2C), and **log** S from -9 to 1 (Fig. 2D). As such, we consider any materials falling within these ranges as "fragrance-like" materials.

* The prediction deviation was added to the predicted value for conservative purposes

Fig. 1. Workflow for applying the skin absorption model (SAM) in safety assessment. For a target material, first, look for available skin absorption data. If an experimental value is not available, look for experimentally derived K_p and water solubility values to calculate J_{max} . If an experimentally derived K_p is not available, look for an experimentally derived **log** K_{ow} , or use consensus value to estimate the **log** K_{ow} , to determine a predicted K_p using Eq. (4). This predicted K_p may be used with experimentally derived or predicted solubility values to calculate J_{max} . Then the percent skin absorption is estimated based on Eq. (8). If the fragrance material is an ester, one needs to calculate the J_{max} of the parent and breakdown products (i.e., carboxylic acid and alcohol moieties). For conservative purposes accept the value that gives the highest skin absorption.

Fig. 2. The fragrance chemical space depicted using *MW*, **log** *K*_{ow} and **log** *S*. (A) The overlap of 2120 fragrance materials (red dots) from RIFM's database on ~500,000 industry chemicals from USEPA ACTOR database (blue dots). (B) The histogram of *MW* of 2120 fragrance materials. (C) The histogram of **log** *K*_{ow} of 2120 fragrance materials. (D) The histogram of **log** *S* of 2120 fragrance materials. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2.2. Datasets for validating and refining SAM

An important step in calculating J_{max} is to get the K_p – the permeability coefficient. Potts and Guy's equation was proposed to be used for calculating the K_p (Potts and Guy, 1992). In order to evaluate the suitability of the Potts and Guy's equation, 105 materials falling within the fragrance chemical space with experimentally determined $K_{\rm p}$ and log Kow values were collected as data set I. Some of that data came from the Flynn data set (Flynn, 1990) that was used to develop the original $K_{\rm p}$ equation by Potts and Guy (1992). The rest came from EDETOX dataset (Table 1). To validate SAM, 131 materials falling within the fragrance chemical space, with experimentally determined (via in vitro or *in vivo* methods) percent skin absorption from using either human or pig skin were collected as data set II (Table 2). Rat data were excluded from this study due to the significant species difference between rat and human (van Ravenzwaay and Leibold, 2004). Of the validation material, 54 were fragrance materials and 77 were "fragrancelike" materials. Forty-five (45) were collected from RIFM's database (Api et al., 2013; Barber et al., 1992; Bickers et al., 2005; Bobin et al., 1997; Bronaugh et al., 1990; Cross et al., 1998; Ford et al., 1999, 2001; Gilpin et al., 2010; Green et al., 2008; Green et al., 2014; Green and Brain, 2001, 2005; Green and Walters, 2006; Hawkins et al., 1994, 1995, 2002; Hotchkiss, 1998; Isola and Api, 2002; Jimbo, 1983; Keith, 2003; Kraeling and Bronaugh, 1997, 2003; Liu and Hotchkiss, 1997; Madsen et al., 2011; Politano et al., 2013; Smith et al., 2000; Tonge, 1995; Watkinson et al., 1992; Yang et al., 1994; Yano et al., 1986), and 86 from the EDETOX database (Williams, 2004). Of the 54 fragrance materials, 52 had human data (46 in vitro, six in vivo) and two had pig data (in vitro). Of the 77

"fragrance-like" materials, 72 had human data (46 *in vitro*, 26 *in vivo*) and five had pig data (two *in vitro*, three *in vivo*). Our validation data set contained 96 materials with experimentally determined **log** K_{ow} , 81 with experimentally determined water solubility (C_{water}^{Sat}), and 27 had an experimentally determined K_p . Twenty-two had all three parameters experimentally derived.

2.3. Calculating J_{max}

As shown in Equation (Eq. (1)) below, J_{max} is calculated from two parameters – the permeability coefficient (K_p) used to characterize the diffusion of chemicals through membranes expressed as cm/h (Hostynek, 2008), and saturated water solubility (C_{water}^{Sat} , in the unit of mg/L or µg/cm³).

$$J_{max}(\mu g/cm^2/h) = K_p(cm/h) \times C_{water}^{sat}(\mu g/cm^3)$$
(1)

2.3.1. Calculate K_p

As shown above, one of the important parameters to calculate J_{max} is K_{p} . In most cases, the experimental determined K_{p} is not available. Therefore, a proper QSAR model could be useful to get an estimated K_{p} . Kroes et al. (2007) proposed to use Potts and Guy's equation (Eq. (2)), which was derived from the Flynn data set of 93 materials with experimentally determined K_{p} (Flynn, 1990).

$$\log K_p(cm/h) = -2.7 + 0.71 \times \log K_{ow} - 0.0061 \times MW$$
(2)

$$(n = 93, r^2 = 0.67, SE = 0.794, F = 84.05)$$

Table 1

Predicted and experimentally determined K_p and K_{ow} of 105 fragrance and "fragrance-like" materials.

Insp. Fag. Fag. Fag. Cary fag. With Page 2.(2.httrogethers) 115.4.5. 162.21 1.55 -2.22 -2.24 -2.44 PEPTOX 2.(2.httrogethers) 114.9.6.0 1.03.4 0.05.4 0.02 -3.48 3.50 3.44 PEPTOX 2.1.4ttrongethers 113.42.6.0 0.01.2 -1.01 -0.41 -4.40 -3.00 3.34 PEPTOX 2.1.4ttrongethers 78.93-3 72.11 0.22 -2.23 -2.33 -2.38 PEPTOX 2.4ttrogethers 16.96-87 10.81 2.03 -3.20 -3.44 -2.26 PEPTOX 2.4ttrogethers 16.96-97 10.81 -0.05 -1.01 -3.30 -3.41 DEDTOX 2.4ttrogethers 10.95-91 10.81 -0.16 -1.80 -3.30 -3.14 DEDTOX 2.4ttrogethers 10.95-91 10.11 10.05 11.01 -3.45 -1.16 DEDTOX 2.4ttrogethers 10.95-91 10.11	Material name	CAS	MW	log K _{ow}	log K _{ow}		$\log K_{\rm p} ({\rm cm/h})$				
The Upperspense 66.96.2 136.42 117 115 122 2.47 1.44 Pipus ave 24 (2 hauxyethoxy thank) 11.34-5 16.22 2.04 4.45 12.39 1.44 Pipus ave 24 (2 hauxyethoxy thank) 11.34-5 2.04 1.04				Exp.	Est.	Exp.	Guy's Eq.	RIFM's Eq.			
2:2:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0	17a-Hydroxyprogesterone	68-96-2	330.47	317	315	-3.22	-2.47	-3 44	Flynn set		
2-2 2-2 2-3 2-38 -390 -394 EDETOX 2-3-8-britzedio 313-83-9 001 -0.51 -0.41 -4.40 -300 -3.71 Plym set 2-4-3-britzedio 213-23 -1.23 -1.23 -1.23 -1.24 Plym set 2-4-3-britzedio 213-78-22 117-92-2 113-19 0.02 -2.35 -2.33 -2.35 Plym set 2-britzedio 111-79-2 113-18 0.03 0.78 -3.67 -2.48 Plym set 2-britzedio 01-44-7 108-14 102 -0.37 -1.68 -1.69 -1.18 Plym set 2-britzedio 01-44-7 108-14 102 -0.37 -1.64 -3.61 Plym set 2-britzedio 01-45-7 104 -2.55 -1.60 -1.60 Plym set 2-britzedio 01-45-7 104 -2.55 -1.61 Plym set -1.60 Plym set 2-britzedio 01-45 7.10 1.07 1.04	2-(2-Butoxyethoxy)ethanol	112-34-5	162.23	0.56	0.65	-4.45	-3.29	-3.44	EDETOX		
2.1 13.1 513.85.8 90.12 0.92 0.04 4.40 1.30 1.71 Pyrm set 2.4.0 17.0 17.0 17.0 17.0 17.0 Pyrm set 2.4.0 17.0 17.0 17.0 17.0 17.0 Pyrm set 2.4.0 17.0	2-(2-Ethoxyethoxy)ethanol	111-90-0	134.18	-0.54	-0.32	-3.88	-3.90	-3.94	EDETOX		
24.6-Tickhorsphenol 25167-82-2 197.45 3.69 3.57 -1.28 -1.28 -1.88 Phym set 2.4-Dickhorsphenol 12617-82-2 1.53 -3.51 2.51 2.53 Phym set 2.4-Dickhorsphenol 12167-80-0 1263 2.13 2.51 2.53 Phym set 2-Chrosphenol 12167-80-0 1263 2.43 -1.48 -3.66 -1.81 Phym set 2-Chrosphenol 1169-85-1 108.14 1.95 2.65 -1.56 -1.66 Phym set 2-Chrosphenol 104-94-5 108.14 0.47 -1.55 -1.66 -1.60 Phym set 2-Neptohol 104-93-7 170.21 3.09 3.21 -1.54 -1.61 DETTOX 2-Neptohol 94-93-7 170.21 2.98 2.22 -1.44 -1.62 -1.07 Phym set 2-Neptophon 135.12.2 170.01 2.58 -2.23 -1.27 -1.07 Phym set 2-Neptophon 135.12.8 103.22	2,3-Butanediol	513-85-9	90.12	-0.92	-0.41	-4.40	-3.90	-3.71	Flynn set		
2.4-bit.kinosphenol 10-83-2 163.00 2.03 -1.22 -1.52 PLS 2.4-bit.kinosphenol 111-76.3 118.16 0.35 0.57 -2.35 -2.31 PLS 2.4-bit.kinosphenol 111-76.3 118.16 0.35 0.57 -3.67 -2.85 -2.711 PPTOX 2.4-bit.kinosphenol 10-80-5 90.12 -0.32 0.23 -3.60 -3.48 -3.26 Physics 2.4-bit.kinosphenol 10-80-5 90.12 -0.32 0.23 -3.60 -3.44 EDETOX 2.4-bit.kinosphenol 10-84-5 70.10 1.08 -4.42 -3.71 -3.41 EDETOX 2.4-bit.kinosphenol 90.43-7 70.21 1.09 1.21 -4.46 -1.50 Physics 2.4-bit.kinosphenol 90.44-7 170.21 1.09 1.21 -1.46 -1.00 -1.52 Physics 3.4-bit.physics 1.55 1.56 1.72 1.72 2.72 -2.21 Physics 3.4-bit.physics<	2,4,6-Trichlorophenol	25167-82-2	197.45	3.69	3.57	-1.23	-1.28	-1.48	Flynn set		
2-batance 78-83-3 72.11 0.23 0.52 -2.33 -2.243 -2.243 2-batancythenia 215177-340 12355 2.135 -2.451 1.44 1.96 -2.151 2-batanythenia 108-85- 9.012 -0.35 -2.50 -4.64 -2.50 Physical set 2-batanythenia 108-86-4 7.610 0.77 0.64 -2.50 -2.464 -1.66 Physical set 2-batanythania 108-86-4 7.610 0.77 0.64 2.54 -1.66 Physical set 2-batanythania 108-86-4 7.610 7.77 0.64 -2.67 -2.77 Physical set 2-batanythania 108-13-14 12.01 1.16 -2.67 -1.70 Physical set 3-Afrondo 92-65-6 122.17 1.28 1.88 1.96 -1.62 -1.67 -1.70 Physical set 3-Afrondon 105-41-3 173.10 2.05 1.144 1.91 1.91 1.91 1.91 1.91	2,4-Dichlorophenol	120-83-2	163.00	3.06	2.93	-1.22	-1.52	-1.55	Flynn set		
2-Burospechanol 111-76-2 118.18 0.83 0.78 -3.67 -2.83 -2.71 IDEROX 2-Chorenge 101-30-5 101-35 1.35 2.15 1.24 -1.83 -1.83 Figura et 2-Burospost entrol 101-36-5 101-2 0.53 -0.50 -3.48 -2.75 Figura et 2-Burospost entrol 109-36-1 101-36 0.07 -3.30 -3.48 IDEROX 2-Machtonyethanol 109-36-1 10145 -0.07 -0.64 -2.51 -3.48 IDEROX 2-Machtonyethanol 102-36-6 12.17 12.28 2.22 -1.46 -1.66 -1.07 Port Port <td>2-Butanone</td> <td>78-93-3</td> <td>72.11</td> <td>0.29</td> <td>0.52</td> <td>-2.35</td> <td>-2.93</td> <td>-2.58</td> <td>Flynn set</td>	2-Butanone	78-93-3	72.11	0.29	0.52	-2.35	-2.93	-2.58	Flynn set		
2-Chrosphenel 218167-30-0 128.56 2.13 2.25 -1.48 -1.96 -1.43 Plyms at 2-Cressin 9.45-7 10814 1.05 2.10 -1.08 -1.08 -1.08 -1.08 -1.08 -1.08 -1.08 Plyms at 2-broposychanol 109-69-1 10415 -0.05 0.07 -2.46 -2.40 -3.44 EBETOX 2-hynoposychanol 129-29-6 138.17 1.16 11.8 -2.87 -2.72 -2.70 EBETOX 2-hynoposychanol 193-14 1.08 1.08 -1.52 -1.51 EBETOX 2-hynoposychanol 193-14 1.06 2.60 1.68 -2.52 -2.17 -1.74 Plym set 3-Ntophenel 105-41.2 17.101 2.58 2.41 -1.44 -1.62 -1.61 Plym set 3-Ntophenel 1105-41.2 17.101 2.58 2.56 -1.75 Plym set 3-Ntophenel 110-41.2 17.101 2.58 2.56 <	2-Butoxyethanol	111-76-2	118.18	0.83	0.78	-3.67	-2.83	-2.71	EDETOX		
2-Cressid 95-H87 108.14 1.95 2.05 -1.80 -1.98 -1.95 Flymmist 2-Innoverhand 11.98.05 3.01 7.01 5.00 Flymmist 5.00 Flymmist 5.00 Flymmist 5.00 Flymmist 5.00 Flymmist 6.00 Flymmist Flyminov Flymist Flymist	2-Chlorophenol	25167-80-0	128.56	2.15	2.25	-1.48	-1.96	-1.83	Flynn set		
2-box (rhano) 111-86-5 301.2 -0.23 -0.40 -3.48 -1.40 Pyrms 47 2-box (rhano) 112-86-4 710 -0.77 -0.55 -1.66 -1.60 Fyrms 42 2-box (rhano) 135-16-3 144,17 2.70 2.71 -1.55 -1.66 -1.60 Fyrms 42 2-box (rhano) 55-65.8 122,17 2.23 2.22 -1.44 -1.61 EDETOX 3-Cresol 108-36.4 108,14 1.96 2.05 -1.82 -1.73 -1.74 Fyrm set 3-Cresol 106-14.2 130.0 2.08 1.66 -2.13 -2.13 -2.13 Fyrm set 4-Choroscol 105-04-5 122,59 2.24 -1.44 -1.92 -2.03 Fyrm set 4-Choroscol 105-04-5 122,59 2.27 -1.44 -1.73 -1.44 Fyrm set 4-Cresol 109-7.3 102,11 2.38 2.36 -1.44 -1.33 Fyrm set 4-Cresol 100-45	2-Cresol	95-48-7	108.14	1.95	2.05	-1.80	-1.98	-1.75	Flynn set		
2-borphonychrainino 100-30 100-30 100-30 2-30 2-30 2-14 Energian 2-branchad 132-10-3 14417 220 2-13 -156 -166 -160 Flynn ect 2-brenoxychtanol 122-90-6 138,17 116 118 -287 -222 -220 -200 EDETOX 3-Avighenol 90-43-7 17021 320 3.21 -180 -154 -1.61 EDETOX 3-Nirophenol 55.65.8 122.17 223 2.22 -1.44 -1.82 -1.70 Phynase 3-Nirophenol 155.04.4 142.00 1.88 -2.23 -2.21 -2.16 +1.55 Phynase 4-Chorophenol 150.04.4 142.39 2.73 2.72 -1.44 -1.79 -1.55 Phynase 4-Chorophenol 130-77.3 108.14 1.94 2.06 -1.75 -1.88 -1.75 Phynaset 4-Ebry phenol 122-07-9 122.17 2.58 2.46 -1.41 <td>2-Ethoxy ethanol</td> <td>110-80-5</td> <td>90.12</td> <td>-0.32</td> <td>-0.23</td> <td>-3.60</td> <td>-3.48</td> <td>-3.26</td> <td>Flynn set</td>	2-Ethoxy ethanol	110-80-5	90.12	-0.32	-0.23	-3.60	-3.48	-3.26	Flynn set		
3-byperhal 135-10-3 144.17 12.70 2.71 -1.55 -1.66 -1.60 Hypn act 2-Phenoxyphanal 90-45-7 170.21 3.09 3.21 -1.80 -1.22 -2.72 -2.70 EDEROX 2-Phenoxyphanal 90-45-7 170.21 3.09 3.21 -1.80 -1.86 -1.70 Flynn set 3-Cread 108-39-4 108.14 1.96 -2.22 -2.31 -2.07 Flynn set 3-PhenoxyPhanal 133-42 133.01 2.20 1.58 -2.22 -2.03 Epronset 3-PhenoxyPhanal 133-42 133.01 2.20 1.28 -1.60 -2.03 Epronset 4-Chlorococo 107.04-5 1.23.97 2.73 2.27 -1.44 -1.75 Flynn set 4-Chlorococo 139.17 108.14 1.29 2.26 -1.46 1.61 -1.43 Flynn set 4-Cresid 139.17 1.211 1.19 1.67 -2.214 -1.67 Flynn set <td>2-Isopropoxyethanol</td> <td>109-59-1</td> <td>104.15</td> <td>0.05</td> <td>0.17</td> <td>-3.36</td> <td>-3.30</td> <td>-3.14</td> <td>EDETOX</td>	2-Isopropoxyethanol	109-59-1	104.15	0.05	0.17	-3.36	-3.30	-3.14	EDETOX		
2-Phenopyehanol 122-99-6 13817 116 118 -2.87 -2.27 -2.70 PDFTX 3.4-Sylenol 96-63-8 172.17 3.09 3.21 -1.30 -1.54 -1.61 EDTTX 3.4-Sylenol 96-63-8 122.17 2.23 2.52 -1.44 -1.61 EDTTX 3Nitrophenol 554-84-7 133.12 2.00 1.68 -2.20 -2.03 EDTTX 4-Promphenol 106-41-2 17.30 2.58 2.56 -1.44 -1.79 -1.65 Fymm set 4-Chorophenol 106-47-9 122.47 2.58 2.56 -1.46 -1.61 -1.43 Fymm set 4-Chorophenol 100-02-7 13.11 1.91 1.67 -2.25 -3.17 EDETOX 4-Nitrophenol 100-02-7 13.11 1.91 1.67 -2.24 -2.61 -3.63 Fymm set 4-Shuoroncal 57.45.3 18.40 0.65 0.67 -3.65 -3.67 Fym set	2-Naphthol	135-19-3	144.17	2 70	2 71	-2.54	-166	-1.60	Flynn set		
p-merghphani 90-43-7 170.1 3.09 3.21 -1.80 -1.61 EDETOX 3-Cresol 108-39-4 108.14 1.96 2.05 -1.82 -1.97 -1.74 Plynn set 3-Netrophenol 133-15-2 132.0 1.88 1.06 -1.22 -2.13 -2.07 Plynn set 4-Bromophenol 106-41-2 173.01 2.25 2.41 -1.44 -1.92 -2.13 Phynn set 4-Cheoral 137.06-64 142.55 2.27 -1.26 -1.69 -1.52 Plynn set 4-Cheoral 137.07-9 122.17 2.58 2.66 -1.61 -1.43 Plynn set 5-Fhoromarcal 131.07-3 123.11 1.91 1.67 -2.25 -2.19 -2.14 Plynn set 5-Fhoromarcal 51-21.8 130.08 -0.82 -4.78 -4.13 -4.16 EDETOX Arceptainbini 51-21.8 130.01 -2.44 -2.61 3.05 Plynn set Stataaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	2-Phenoxyethanol	122-99-6	138.17	116	118	-2.87	-2.72	-2.70	EDETOX		
34.4 Xyfrol 96-65-8 12.17 2.23 2.52 -1.44 -1.68 -1.70 Flyms et 3-Ntrophend 554-84-7 13.11 2.00 1.68 -2.25 -2.13 EDFTOX 4-Bronghend 106-41-2 17.30 2.59 2.41 -1.44 -1.92 -2.03 Flyms et 4-Chiorogened 106-48-2 17.30 2.59 2.24 -1.44 -1.92 -2.03 Flyms et 4-Chiorogened 106-48-9 12.55 2.38 2.58 -1.44 -1.90 -1.52 Flyms et 4-Chiorogened 106-07 13.11 1.91 1.67 -2.25 -2.14 -2.04 -2.01 -2.05 Flyms et 4-Hittyphend 100-07 13.01 1.91 1.67 -2.24 -2.01 -3.05 Flyms et 4-Hittyphend 100-47 13.01 1.06 0.05 0.67 -3.35 -3.63 -3.63 Flyms et Anopharbial 50-74-3.2 7.81 2.12	2-Phenylphenol	90-43-7	170.21	3.09	3.21	-1.80	-1.54	-1.61	EDETOX		
j-Cr i-Cr i-Lit i	3,4-Xylenol	95-65-8	122.17	2.23	2.52	-1.44	-1.86	-1.70	Flynn set		
3-Nitrophenol 554-84-7 1311 2.00 1.68 -2.25 -1.31 -2.07 Pipms et Pipms et A-Bromphenol 4-Bromphenol 1064-1-2 173.01 2.59 2.41 -1.44 -1.52 -2.03 Pipms et Pipms et A-Charocreen 4-Charocreen 100-48-8 125.56 2.78 2.27 -1.44 -1.79 -1.65 Pipms et Pipms et A-Charocreen 4-Charocreen 100-02-7 118.11 2.19 2.66 -1.75 -1.88 -1.75 Pipms et Pipms et A-Charocreen 5-Hurocroard 10-10-7 118.11 2.18 2.06 -1.75 -1.88 -1.75 Pipms et Pipms et A-Charocreen 5-Hurocroard 15-1-8 130.08 -0.89 -2.10 -2.14 Pipms et Pipms et Barbial -2.12 Pipms et Pipms et Barbial Pipms et Pipms et P	3-Cresol	108-39-4	108.14	1.96	2.06	-1.82	-1.97	-1.74	Flynn set		
3-Phenyh-1-propanol 135-12-2 136.20 1.88 1.96 -1.28 -2.20 -2.13 EPUTOX 4-Rormophenol 1570-64-5 142.50 2.78 2.72 -1.60 -1.52 Flym set 4-Chiorophenol 1319-77.3 108.14 1.44 2.06 -1.75 -1.88 -1.75 Flym set 4-Cherophenol 1319-77.3 108.14 1.44 2.06 -1.75 -1.88 -1.75 Flym set 4-Hind phenol 152-0.74 122.17 2.53 -1.46 -1.61 -1.43 PBUTOX Aeroplacify/ic acid 57.78-2 128.08 -0.89 -0.82 -2.64 -2.05 -3.17 EDDTOX Amobarbital 57.48-2 128.28 2.07 1.92 -2.64 -2.05 -3.63 Phym set Barbital 57.48-3 184.20 0.65 0.67 -3.21 -1.07 EDETOX Berexyl acohal 100-51-6 108.14 1.10 1.14 -2.22 -2.28 -2.39 </td <td>3-Nitrophenol</td> <td>554-84-7</td> <td>139.11</td> <td>2.00</td> <td>1.68</td> <td>-2.25</td> <td>-2.13</td> <td>-2.07</td> <td>Flynn set</td>	3-Nitrophenol	554-84-7	139.11	2.00	1.68	-2.25	-2.13	-2.07	Flynn set		
4-Bromphenol 1064-12 17,101 2.59 2.41 -1.44 -1.92 -2.03 Fyrm set 4-Chiorophenol 1064-8-9 125.56 2.39 2.27 -1.46 -1.152 Fyrm set 4-Chiorophenol 123.07.9 123.17 2.58 2.56 -1.46 -1.41 -1.43 Fyrm set 4-Hitryphenol 10.0.02.7 133.11 1.57 -2.25 -2.19 -2.14 Fyrm set 5-Hioronuradi 5.12.18 130.06 -0.03 -0.02 -4.78 -4.13 -4.16 EDETOX Acceystaling/ir add 5.15.8 2.89.38 1.83 -4.12 -3.17 -3.97 Phyrm set Barbial 5.74-3 1.84.2 0.065 0.07 -3.26 -2.28 -2.23 EDETOX Benzoir acid 1065-1-6 108.14 1.10 1.14 -2.22 -2.58 EDETOX Benzoir acid 1004-35-3 61.83 0.17 -0.74 -3.30 -2.64 2.55 EDETOX	3-Phenyl-1-propanol	1335-12-2	136.20	1.88	1.96	-1.28	-2.20	-2.13	EDETOX		
4-Chlorocresol 1570-64-5 122.50 2.78 2.72 -1.26 -1.60 -1.52 Phym set 4-Chrosophenol 1319-77-3 108.14 1.44 2.26 -1.75 -1.88 -1.75 Figm set 4-Cresol 1319-77-3 108.14 1.44 2.26 -1.44 -1.41 Phym set 4-Hing phenol 152-07-3 122.17 2.36 -1.46 -1.61 -1.43 Phym set 4-mixphane 05-18-2 122.07 126 -2.14 -2.03 -3.17 EDETOX Arrophica 51-58-8 289.38 1.83 -142 -3.07 3.97 Phym set Barbital 57-48-2 282.08 1.07 -0.55 -1.66 -1.25 EDETOX Bernzein 71-43-2 78.11 1.213 1.19 -0.65 -1.25 EDETOX Bernzein acid 100-51-6 108.14 1.10 1.14 -2.20 -2.24 EDETOX Bernzein acid 100-53-1 108.	4-Bromophenol	106-41-2	173.01	2.59	2.41	-1.44	-1.92	-2.03	Flynn set		
4-Chrosphenol 106-84-9 128.56 2.39 2.27 -1.44 -1.79 -1.85 Ppuns set 4-Cresol 1319-77-3 122.17 2.58 2.56 -1.40 -1.41 Ppuns set 4-Ethylphenol 130-02-7 133.11 131 1.67 -2.25 -2.10 -2.14 Ppuns set 5-Fluorunaral 51-25.8 2.803.8 1.83 1.85 -4.64 -2.61 -3.07 Ppuns set Arryphaleylic acid 57-65.8 2803.8 1.83 1.85 -4.64 -4.17 -3.07 Ppuns set Barbial 57-44.3 184.2 0.65 0.67 -3.95 -3.36 -3.63 Ppun set Benzyl acioha 100-51-6 108.14 1.10 1.14 -2.22 -2.28 -2.39 Ppun set Benzyl aciohat 104.37-3 61.83 0.17 -0.74 -3.00 -2.64 EDETOX Benzyl aciohat 1094.32-5 1.35 -1.53 -1.25 EDETOX	4-Chlorocresol	1570-64-5	142.59	2.78	2.72	-1.26	-1.60	-1.52	Flynn set		
4-Letsol 1319-1/-3 108.14 1.94 2.06 -1.75 -1.93 -1.75 Hymn set 4-Ethyl phenol 10.02.7 133.11 1.91 1.67 -2.23 -2.14 Phym set 4-Nitrophenol 10.02.7 130.11 1.91 1.67 -2.23 -2.14 Phym set Anabarbial 57-24.8 130.16 1.19 1.26 -2.14 -2.61 -3.63 Phym set Anabarbial 57-45.4 226.02 1.92 -2.42 -2.61 -3.63 Phym set Anabarbial 57-45.4 240.0 1.65 -4.95 -1.66 -1.25 EDETOX Benzyal acohol 100-51-6 108.14 1.10 1.14 -2.22 -2.28 -2.30 Phym set Burdy Aleydroxyherzoate 94-42.6 122.12 1.87 1.60 -3.71 -3.20 -2.64 EDETOX Burdy Aleydroxyherzoate 94-2.68 1.94.23 3.57 -3.15 -1.33 -1.25 EDETOX B	4-Chlorophenol	106-48-9	128.56	2.39	2.27	-1.44	-1.79	-1.65	Flynn set		
4-trigriphenol 124/17 2.38 2.39 -1.40 -1.61 -1.43 PpInt set 5-Huoruracial 51-21-8 130.08 -0.83 -0.82 -4.73 -4.11 -1.16 PDITS 5-Huoruracial 51-21-8 130.08 -0.82 -4.73 -4.13 -4.16 EDETOX Amobabilal 57-48-2 226.28 2.07 132 -2.64 -2.81 -3.15 Phym set Barbital 57-48-2 78.11 2.13 1.37 -3.16 -1.22 PDITSX Bernzere 71-48-2 78.11 2.13 1.99 -1.60 -2.12 -1.97 EDETOX Bernzyl acolnal 638-0.6 1212.12 1.10 1.14 -2.20 -2.26 -2.55 EDETOX Bernzyl acolnal 90-4.6 1021.21 1.10 1.14 -1.02 -2.26 -2.25 EDETOX Bernzyl acolnal 90-4.6 1021.21 2.15 -1.15 -1.15 EDETOX Bernzyl acolnal	4-Cresol	1319-77-3	108.14	1.94	2.06	-1.75	-1.98	-1.75	Flynn set		
articly introl 103/10 123/1	4-Etnyi phenol	123-07-9	122.17	2.58	2.56	-1.46	-1.61	-1.43	Flynn set		
AccytSisten 100 <th< td=""><td>4-Nitrophenoi 5-Eluorouracil</td><td>51_21_8</td><td>139.11</td><td>0.80</td><td>0.82</td><td>-2.23</td><td>-2.19</td><td>-2.14</td><td>FIGHT SEL</td></th<>	4-Nitrophenoi 5-Eluorouracil	51_21_8	139.11	0.80	0.82	-2.23	-2.19	-2.14	FIGHT SEL		
Annoharitia Solution Space	Acetylsalicylic acid	50-78-2	180.16	-0.85	126	_214	-2.95	_317	EDETOX		
Arropine 51-55-8 289-38 183 185 4.12 -1.17 -3.97 Flyms set Barbital 57-44-3 184/20 0.65 0.67 -3.95 -3.36 -3.63 Epyms set Bernzoic acid 65-85-0 122.12 1.87 -0.95 -1.66 -1.25 EDETOX Bernzyl incolinate 94-44-0 100-51-6 108.14 1.10 1.14 -2.22 -2.39 -2.24 EDETOX Bernzyl incolinate 94-26-8 194.23 3.57 3.15 -2.15 -1.35 -1.53 EDETOX Butyl 4-hydroxybenzoate 94-26-8 194.23 3.57 3.15 -2.15 -1.35 -1.53 EDETOX Butyl ancotinate 938-06-3 17.9.22 2.27 2.08 -1.78 -2.18 -2.34 EDETOX Butyl ancotinate 59-6.07 142.29 3.10 2.78 -1.26 -1.37 -1.28 EDETOX Chiorocresol 59-5.07 142.29 3.10 2.78	Amoharbital	57-43-2	226.28	2.07	1.20	-2.64	-2.55	-3.05	Flynn set		
Barbial 57-44-3 184.20 0.65 0.67 -3.36 -3.36 -3.68 -3.68 Phynn set Bernzen 71-43.2 78.11 2.13 1.97 -0.95 -1.66 -1.25 EDETOX Bernzyl alcotinate 94-44-0 100-51-6 108.14 1.10 1.14 -2.22 -2.58 -2.39 Phyn set Bernzyl nicotinate 94-46-8 123.24 2.40 -3.30 -2.26 -2.55 EDETOX Burdshrital 77-28-1 121.25 1.73 1.65 -3.31 -2.77 -3.14 EDETOX Burds Alydroxybenzate 94-26-8 194.23 3.57 3.15 -2.15 -1.35 -1.53 EDETOX Burds Alydroxybenzate 94-26-8 194.19 0.07 -0.26 -3.99 -4.29 EDETOX Chioroxresol 59-06-7 142.99 3.10 2.78 -2.18 -1.37 -1.28 EDETOX Chioroxresol 59-06-7 12.03 3.19 -0.16	Atropine	51-55-8	289.38	1.83	1.85	-4.12	-3.17	-3.97	Flynn set		
lenzene 71-43-2 78.11 2.13 1.97 -0.56 -1.66 -1.25 1.97 EDETOX Benzyl alcohol 100-51-6 108.14 110 1.14 -2.22 -2.38 -2.39 EDETOX Benzyl alcohol 94.44-0 123 1.71 1.66 -2.30 -2.264 EDETOX Buryl achol 77.38-1 122 1.73 1.65 -3.71 -2.77 -3.14 EDETOX Buryl achol 94.26-8 194.23 1.57 3.15 -2.15 -1.53 EDETOX Buryl achol 107.32-6 88.11 0.79 0.88 -3.00 -2.38 -2.34 EDETOX Buryl achol 39.60-7 14.29 3.10 2.78 -1.33 -1.22 PLYN Chioroxsol 39.50-7 14.29 3.10 2.78 -1.33 -1.22 PLYN Chioroxintaine 13.392-8 27.48 3.38 6.46 -2.66 -1.38 -1.26 Chioroxintaine	Barbital	57-44-3	184.20	0.65	0.67	-3.95	-3.36	-3.63	Flynn set		
Benzoia cid 65-85-0 122.12 1.87 1.69 -1.00 -2.12 -1.97 EDETOX Benzyl nicotinate 94-44-0 213.24 2.40 2.34 -2.30 -2.64 EDETOX Burobarbital 77.28-1 212.25 1.73 1.65 -3.71 -2.77 -3.14 EDETOX Buryl Arbytanzet 94.26-8 194.23 3.57 3.15 -2.15 -1.35 -1.53 EDETOX Buryl Arbytanzet 6938.06-3 179.22 2.27 2.08 -1.78 -2.18 -2.34 EDETOX Buryl nicotinate 6938.06-3 179.22 2.27 2.08 -1.78 -3.13 -4.29 EDETOX Chirorytenol 58.08-2 194.19 -0.07 -2.66 -3.59 -3.33 -4.29 EDETOX Chirorytenol 88.04-0 15.661 3.27 3.22 -1.28 -1.33 -1.32 Flynn set Coline 76.57-3 299.37 1.19 1.41 -4.31 -	Benzene	71-43-2	78.11	2.13	1.97	-0.95	-1.66	-1.25	EDETOX		
beray lacohol 100-51-6 108.14 1.10 1.14 -2.22 -2.58 -2.39 Fynn set Boric acid 10043-35-3 61.83 0.17 -0.74 -3.30 -2.66 -2.55 EDETOX Butophricital 77.28-1 12.25 0.17 -0.74 -3.31 -2.77 -3.14 Flynn set Butyl Ancontare 6983-60-8 194.23 3.57 3.15 -2.15 -1.35 -1.53 EDETOX Butyl nicotinate 6983-60-8 194.23 3.57 3.15 -2.18 -2.28 -2.29 EDETOX Butyl nicotinate 698-06-7 142.59 0.07 -0.26 -3.59 -3.33 -4.29 EDETOX Chloroxylenol 88.04-0 156.61 3.27 3.22 -1.28 -1.33 -1.28 EDETOX Chloroxylenol 88.04-0 156.61 3.27 3.22 -1.33 -4.26 Flynn set Cortexone 64.85-7 30.047 2.88 3.15 -3.33	Benzoic acid	65-85-0	122.12	1.87	1.69	-1.60	-2.12	-1.97	EDETOX		
Benzy Inicotinate 94-44-0 213.24 2.40 2.34 -1.80 -2.30 -2.64 EDETOX Butobarbital 77-28-1 212.25 1.73 1.65 -3.71 -2.77 -3.14 Flynn set Butyl A-Mytorybenzoate 94-26-8 194.23 3.57 3.15 -2.15 -1.35 -EDETOX Butyl incotinate 938-06-3 179.22 2.27 2.08 -3.00 -2.68 -2.39 FPmn set Calfeine 58-08-2 194.19 -0.07 -0.26 -3.59 -3.93 -4.29 EDETOX Chioroxylenol 88-04-0 156.61 3.27 3.22 -1.28 -1.33 -1.32 Flynn set Chioroxylenol 180-01-0 1.1997 2.03 1.91 -0.10 -1.94 -1.72 EDETOX Codeine 76-57-3 299.37 1.19 1.41 -4.31 -3.68 -4.58 Flynn set Courscone 64-85-7 30.47 2.88 3.15 -3.35	Benzyl alcohol	100-51-6	108.14	1.10	1.14	-2.22	-2.58	-2.39	Flynn set		
Boric acid 10043-35-3 61.83 0.17 -0.74 -3.30 -2.96 -2.55 EDETOX Butyl Alvdroxybenzoate 94-26-8 194.23 3.57 3.15 -3.71 -2.15 -1.53 EDETOX Butyl Alvdroxybenzoate 6938-60-3 179.22 2.27 2.08 -1.78 -2.18 -2.34 EDETOX Butyl nicotinate 58-06-3 194.19 -0.07 -0.26 -3.59 -3.93 -4.29 EDETOX Chiorocresol 59-50-7 142.59 3.10 2.78 -1.26 -1.37 -1.28 EDETOX Chioroxylenol 88-04-0 156.61 3.27 3.22 -1.33 -1.32 Plynn set Cortoxone 76-57.3 2.99.37 1.19 1.41 -4.31 -3.68 -4.58 Plynn set Cortexone 67-85.73 2.99.37 1.19 1.41 -4.31 -3.66 Plynn set Cortexone 67-85.7 30.47 2.88 3.15 -3.35 -2.67	Benzyl nicotinate	94-44-0	213.24	2.40	2.34	-1.80	-2.30	-2.64	EDETOX		
Butto barbinal 77-28-1 212.25 1.73 1.65 -3.71 -2.77 -3.14 Fynn set Butyl 4-hydroxybenzoate 94.26-8 194.22 2.27 2.08 -1.78 -2.18 -2.34 EDETOX Butyrin circinate 6938-06-3 179.22 2.27 2.08 -1.78 -2.18 -2.39 PIVIN set Chiferine 58-08-2 194.19 -0.07 -0.26 -3.59 -3.33 -4.29 EDETOX Chioroxylenol 88-04-0 156.61 3.27 3.22 -1.28 -1.33 -1.32 Flynn set Colorine 76-57-3 299.37 1.19 1.41 -4.31 -3.68 Flynn set Codeine 76-57-3 299.37 1.19 1.41 -4.31 -3.68 Flynn set Codeine 64-85-7 30.47 2.88 3.15 -3.35 -2.67 -3.66 Flynn set Dimethylethylamine 598-56-1 7.314 0.70 0.62 -2.40 -2.65	Boric acid	10043-35-3	61.83	0.17	-0.74	-3.30	-2.96	-2.55	EDETOX		
birtyl Arbydroxybenzoate 94-2b-8 194.23 3.57 3.15 1.15 1.35 1.35 EDE10X Buryl nicrinitate 6938-06-3 179.22 2.27 2.08 -1.78 -2.18 -2.24 EDETOX Buryl nicrinitate 58-06-2 194.19 -0.07 -0.26 -3.59 -3.33 -4.29 EDETOX Chloroxplenol 88-04-0 156.61 3.27 3.22 -1.26 -1.37 -1.28 EDETOX Chloroxplenol 88-04-0 156.61 3.27 3.22 -1.26 -1.37 -1.28 EDETOX Chloroxplenol 8.46-0 156.61 3.27 3.22 -2.66 -1.98 -2.63 Flynn set Cortexone 64-85-7 30.47 2.88 3.15 -3.35 -2.67 -3.66 Flynn set Courtarin 91-64-5 146.15 1.39 1.76 -2.04 -2.62 EDETOX Dimethylethylamine 596-1 73.14 0.70 0.62 -2.40	Butobarbital	77-28-1	212.25	1.73	1.65	-3.71	-2.77	-3.14	Flynn set		
Buttyn Incontnate 6538-06-3 179.22 2.27 2.08 -1.78 -2.18 -2.19 -1.74 EDE10X Gaffeine 55-07 142.59 3.10 -2.68 -3.39 -4.29 EDETOX Chlorocrylenol 55-07 142.59 3.10 2.78 -1.26 -1.37 -1.22 EDETOX Chlorocrylenol 88-04-0 156.61 3.27 3.22 -1.38 -1.32 Flynn set Cis-1.3-Dichloropropene 10061-01-5 110.97 2.03 1.91 -0.10 -1.94 -1.72 EDETOX Codeine 76-57.3 299.37 1.19 1.41 -4.31 -3.68 -4.58 Flynn set Courmarin 91-64-5 146.15 1.39 1.76 -2.04 -2.60 -2.62 EDETOX Dimethylethylamine 588-56-1 7.314 0.70 0.62 -2.40 -2.65 -2.28 EDETOX Dimethylethylamine 68-12-2 7.310 -1.01 -0.60 -2.02	Butyl 4-hydroxybenzoate	94-26-8	194.23	3.57	3.15	-2.15	-1.35	-1.53	EDETOX		
Dary in actu 10/32-0 60.11 0.73 0.63 -2.06 -2.05 -2.05 -2.05 12.05	Butyr nicotinate	0938-00-3 107 02 6	I /9.22	2.27	2.08	-1.78	-2.18	-2.34	EDETOX Elvpp.cot		
Chiorocresol 59:50-7 142:59 3.03 2.78 1.26 1.37 1.22 EDETOX Chioroxylenol 88:04-0 156:61 3.27 3.22 -1.28 -1.33 -1.32 Flynn set Choroxylenol 13:92-8 274.80 3.38 3.64 -2.66 -1.98 -2.63 Flynn set Codeine 76:57-3 299.37 1.19 1.41 -4.31 -3.68 4.548 Flynn set Cortexone 64:85-7 30.47 2.88 3.15 -3.35 -2.67 -3.66 Flynn set Diciofenac 1530'7-86-5 296.15 4.51 4.39 -3.00 -1.30 -2.02 EDETOX Dimethylformanide 68-12-2 73.10 -1.01 -0.60 -2.02 -3.86 -3.58 EDETOX Dimethylformanide 69-12-2 73.14 0.70 0.62 -2.40 -2.65 -2.28 EDETOX Dimethylformanide 68-12-2 73.14 0.70 0.62 -2.	Caffeine	58-08-2	194.19	_0.79	-0.26	-3.50	-2.08	-2.39	FDFTOX		
Chloroxylenol 88-04-0 156.61 3.27 3.22 -1.28 -1.33 -1.32 Flynn set Chloroxylenol 1061-01-5 110.97 2.03 1.91 -0.10 -1.98 -2.63 Flynn set Cisl 1.3-Dichloropropene 1061-01-5 110.97 2.03 1.91 -0.10 -1.94 -1.72 EDETOX Codeine 76-57-3 299.37 1.19 1.41 -4.31 -3.68 -4.58 Flynn set Cournarin 91-64-5 146.15 1.39 1.76 -2.04 -2.60 -2.62 EDETOX Dinethylethylamine 598-56-1 73.14 0.70 0.62 -2.40 -2.65 -2.28 EDETOX Dimethylethylamine 598-56-1 73.14 0.70 -6.62 -2.40 -2.65 -2.28 EDETOX Dimethylethylamine 131-11-3 194.19 1.60 -2.62 -2.36 -3.58 EDETOX Dimethylethylamine 50-28-2 272.39 4.01 3.82 <	Chlorocresol	59-50-7	142.59	310	2.78	-126	-137	-1.28	EDETOX		
Chlorpheniramine 113-92-8 274.80 3.38 3.64 -2.66 -1.98 -2.63 Flynn set cis -13-Dichloropropene 10061-01-5 110.97 2.03 1.91 -0.10 -1.94 -1.72 EDETOX Codeine 76-57-3 299.37 1.19 1.41 -4.31 -3.68 -4.58 Flynn set Cortexone 64-85-7 330.47 2.88 3.15 -3.35 -2.67 -3.66 Flynn set Diclofenac 15307-86-5 296.15 4.51 4.39 -3.00 -1.30 -2.02 EDETOX Dimethylformamide 68-12-2 73.10 -1.01 -0.60 -2.02 -3.88 EDETOX Dimethylformamide 59-28-1 73.14 0.70 -2.22 -3.33 EDETOX Dimethylformamide 69-12-2 73.10 1.10 -2.22 -2.23 -3.03 EDETOX Dimethylformamide 69-12-2 73.13 3.82 -2.40 -1.51 -2.12 Flynn set	Chloroxylenol	88-04-0	156.61	3.27	3.22	-1.28	-1.33	-1.32	Flynn set		
cis-13-Dichloropropene10061-01-5110.972.031.91-0.10-1.94-1.72EDETOXCodeine76-57-3299.371.191.41-4.31-3.68-4.58Flynn setCourtexone64-85-7330.472.883.15-3.35-2.67-3.66Flynn setCourtexone91-64-5146.151.391.76-2.04-2.60-2.62EDETOXDiclofenac15307-86-5266.154.514.39-3.00-1.30-2.02EDETOXDimethylethylamine598-56-173.140.700.62-2.40-2.65-2.28EDETOXDimethylethylamine68-12-273.10-1.01-0.60-2.02-3.86-3.88EDETOXDimethylethylamine598-56-173.140.700.62-2.40-1.51-2.12Flynn setEstradiol68-12-273.10-1.01-0.60-2.02-3.86-3.88EDETOXDMP131-11-3194.191.601.75-4.48-2.75-3.03EDETOXEstradiol50-27-1288.392.452.71-4.40-2.72-3.49Flynn setEstrone53-16-7270.373.133.85-2.44-2.13-2.76Flynn setEthyl benzene100-41-4106.173.152.970.08-1.11-0.81Flynn setEthyl benzene100-41-4106.173.152.970.08-1.11-0.86-2.73 <t< td=""><td>Chlorpheniramine</td><td>113-92-8</td><td>274.80</td><td>3.38</td><td>3.64</td><td>-2.66</td><td>-1.98</td><td>-2.63</td><td>Flynn set</td></t<>	Chlorpheniramine	113-92-8	274.80	3.38	3.64	-2.66	-1.98	-2.63	Flynn set		
Codeine 76-57-3 299.37 1.19 1.41 -4.31 -3.68 -4.58 Flynn set Cortexone 64-85-7 33.047 2.88 3.15 -3.35 -2.67 -3.66 Flynn set Counarin 91-64-5 146.15 1.39 1.76 -2.04 -2.60 -2.62 EDETOX Didotoffac 15307-36-5 2.96.15 4.51 4.39 -3.00 -1.30 -2.02 EDETOX Dimethylethylamine 598-56-1 73.14 0.70 0.62 -2.40 -2.65 -2.28 EDETOX Dimethylethylamine 598-56-1 73.10 -1.01 -0.60 -2.02 -3.86 -3.58 EDETOX DMP 131-11-3 194.19 1.60 1.75 -4.48 -2.75 -3.04 Flynn set Estradiol 50-28-2 272.39 4.01 3.82 -2.40 -1.51 -2.12 Flynn set Estradiol 50-27-1 288.39 2.45 2.71 -4.40	cis-1,3-Dichloropropene	10061-01-5	110.97	2.03	1.91	-0.10	-1.94	-1.72	EDETOX		
Cortexone 64-85-7 330.47 2.88 3.15 -3.35 -2.67 -3.66 Flynn set Coumarin 91-64-5 146.15 1.39 1.76 -2.04 -2.60 -2.62 EDETOX Dinethylethylamine 588-56-1 73.14 0.70 0.62 -2.40 -2.65 -2.28 EDETOX Dimethylethylamine 68-12-2 73.10 -1.01 -0.60 -2.02 -3.86 -3.58 EDETOX Dimethylethylamine 299-42-3 165.24 1.13 1.10 -2.22 -2.91 -3.04 Flynn set Estradiol 50-28-2 272.39 4.01 3.82 -2.40 -1.51 -2.12 Flynn set Estrone 50-27-1 288.39 2.45 2.71 -4.40 -2.72 -3.49 Flynn set Estrone 53-16-7 270.37 3.13 3.85 -2.44 -2.13 -2.76 Flynn set Ethyl benzene 100-41-4 106.17 3.15 2.97 0.0	Codeine	76-57-3	299.37	1.19	1.41	-4.31	-3.68	-4.58	Flynn set		
Counarin 91-64-5 146.15 1.39 1.76 -2.00 -2.62 EDETOX Diclofenac 15307-86-5 296.15 4.51 4.39 -3.00 -1.30 -2.02 EDETOX Dimethylethylamine 598-56-1 73.14 0.70 0.62 -2.40 -2.65 -2.28 EDETOX Dimethylethylamine 68-12-2 73.10 -1.01 -0.60 -2.02 -3.86 -3.58 EDETOX Dimethylethylamine 299-42-3 165.24 1.13 1.10 -2.22 -2.91 -3.04 Flynn set Estradiol 50-28-2 272.39 4.01 3.82 -2.40 -1.51 -2.12 Flynn set Estradiol 50-27-1 283.9 2.45 2.71 -4.40 -2.72 -3.49 Flynn set Estradiol 64-17-5 46.07 -0.31 -0.17 -3.10 -3.20 -2.76 Flynn set Ethyl benzene 60-29-7 74.12 0.89 0.90 -1.80	Cortexone	64-85-7	330.47	2.88	3.15	-3.35	-2.67	-3.66	Flynn set		
Dickofenac 15307-86-5 296.15 4.51 4.39 -3.00 -1.30 -2.02 EDETOX Dimethylethylamine 598-56-1 73.14 0.70 0.62 -2.40 -2.65 -2.28 EDETOX Dimethylethylormamide 68-12-2 73.10 -1.01 -0.60 -2.02 -3.86 -3.58 EDETOX DMP 131-11-3 194.19 1.60 1.75 -4.48 -2.75 -3.03 EDETOX Estradiol 50-28-2 272.39 4.01 3.82 -2.40 -1.51 -2.12 Flynn set Estrone 53-16-7 270.37 3.13 3.85 -2.44 -2.13 -2.76 Flynn set Ethyl benzene 100-41-4 106.17 3.15 2.97 0.08 -1.11 -0.81 Flynn set Ethyl teher 60-29-7 74.12 0.89 0.90 -1.80 -2.52 -2.15 Flynn set Ethyl teher 60-29-7 74.12 0.89 -1.70 -1.78 <td>Coumarin</td> <td>91-64-5</td> <td>146.15</td> <td>1.39</td> <td>1.76</td> <td>-2.04</td> <td>-2.60</td> <td>-2.62</td> <td>EDETOX</td>	Coumarin	91-64-5	146.15	1.39	1.76	-2.04	-2.60	-2.62	EDETOX		
Dimethylethylamine598-56-173.140.700.62-2.40-2.65-2.28EDETOXDimethylethylformamide68-12-273.10-1.01-0.60-2.02-3.86-3.58EDETOXDMP131-11-3194.191.601.75-4.48-2.75-3.03EDETOXEphedrine299-42-3165.241.131.10-2.22-2.91-3.04Flynn setEstradiol50-27-1288.392.452.71-4.40-2.72-3.49Flynn setEstrol50-27-1270.373.133.85-2.44-2.13-2.76Flynn setEstrone53-16-7270.373.130.017-3.10-3.20-2.73Flynn setEthyl benzene100-41-4106.173.152.970.08-1.11-0.81Flynn setEthyl benzene100-41-4106.173.152.970.08-1.11-0.81Flynn setEthyl benzene614-18-6151.171.321.10-2.18-2.68-2.73EDETOXHeytanoic acid111-14-8130.192.422.66-1.70-1.78-1.65Flynn setIbuprofen15687-27-1206.293.973.69-1.44-1.14-1.37EDETOXIsoquinoline19-65-3129.162.06-1.82-1.97-1.74EDETOXMDA101-77-9198.271.592.21-2.64-2.78-3.08EDETOXMDA1	Diclofenac	15307-86-5	296.15	4.51	4.39	-3.00	-1.30	-2.02	EDETOX		
Dimetryliformamide68-12-273.10-1.01-0.60-2.02-3.86-3.58EDE1OXDMP131-11-3194.191.601.75-4.48-2.75-3.04Flynn setEphedrine299-42-3165.241.131.10-2.22-2.91-3.04Flynn setEstradiol50-28-2272.394.013.82-2.40-1.51-2.12Flynn setEstroil50-27-1288.392.452.71-4.40-2.72-3.49Flynn setEstrone53-16-7270.373.133.85-2.44-2.13-2.76Flynn setEthanol64-17-546.07-0.31-0.17-3.10-3.20-2.73Flynn setEthyl benzene100-41-4106.173.152.970.08-1.11-0.81Flynn setEthyl icotinate614-18-6151.171.321.10-2.18-2.68-2.73EDETOXHeptanoic acid111-14-8130.192.422.36-1.70-1.78-1.65Flynn setIbuprofen15687-27-1206.293.973.69-1.44-1.14-1.37EDETOXIsoquinoline119-65-3129.162.06-1.82-1.97-1.74EDETOXMDA101-77-9198.271.592.21-2.64-2.78-3.08EDETOXMopa08-39-4108.141.962.06-1.82-1.97-1.74EDETOXMopA101-77-9	Dimethylethylamine	598-56-1	73.14	0.70	0.62	-2.40	-2.65	-2.28	EDETOX		
DMP131-11-3194-191.001.75-4.48-2.75-3.03EDFIOXEphedrine299-42-3165.241.131.10-2.22-2.91-3.04Hynn setEstradiol50-28-2272.394.013.82-2.40-1.51-2.12Hynn setEstroil50-27-1288.392.452.71-4.40-2.72-3.49Hynn setEstrone53-16-7270.373.133.85-2.44-2.13-2.76Hynn setEthanol64-17-546.07-0.31-0.17-3.10-3.20-2.73Hynn setEthyl benzene100-41-4106.173.152.970.08-1.11-0.81Hynn setEthyl ther60-29-774.120.890.90-1.80-2.52-2.15Flynn setEthyl nicotinate614-18-615.171.321.10-2.18-2.68-2.73EDETOXHeytanoic acid111-14-8130.192.422.36-1.70-1.78-1.65Flynn setIbuprofen15687-27-1206.293.973.69-1.44-1.14-1.37EDETOXIsoquinoline119-65-3129.162.081.91-1.78-2.01-1.89Flynn setIbuprofen15687-27-1206.293.973.69-1.44-1.14-1.37EDETOXMDA101-77-9198.271.592.21-2.64-2.78-3.08EDETOXMDA101-77-9 </td <td>Dimethylformamide</td> <td>68-12-2</td> <td>/3.10</td> <td>-1.01</td> <td>-0.60</td> <td>-2.02</td> <td>-3.86</td> <td>-3.58</td> <td>EDETOX</td>	Dimethylformamide	68-12-2	/3.10	-1.01	-0.60	-2.02	-3.86	-3.58	EDETOX		
Epitedinic259-42-3100.241.131.10-2.22-2.31-3.04Hym setEstradiol50-28-2272.394.013.82-2.40-1.51-2.12Flym setEstrol50-27-1288.392.452.71-4.40-2.72-3.49Flym setEstrone53-16-7270.373.133.85-2.44-2.13-2.76Flym setEthanol64-17-546.07-0.31-0.17-3.10-3.20-2.73Flym setEthyl benzene100-41-4106.173.152.970.08-1.11-0.81Flym setEthyl benzene60-29-774.120.890.90-1.80-2.52-2.15Flym setEthyl nicotinate614-18-6151.171.321.10-2.18-2.68-2.73EDETOXHeptanoic acid111-14-8130.192.422.36-1.70-1.78-1.65Flym setIbuprofen1568-727-1206.293.973.69-1.44-1.14-1.37EDETOXIsoquinoline119-65-3129.162.081.91-1.78-2.01-1.89Flym setm-Cresol108-39-4108.141.962.06-1.82-1.97-1.74EDETOXMDA101-77-9198.271.592.21-2.64-2.78-3.08EDETOXMcHanol67-56-13.204-0.77-0.64-3.30-3.44-2.91Flym setMethyl nicotinate </td <td>DMP</td> <td>131-11-3</td> <td>194.19</td> <td>1.00</td> <td>1.75</td> <td>-4.48</td> <td>-2.75</td> <td>-3.03</td> <td>EDETUX Elvpp.cot</td>	DMP	131-11-3	194.19	1.00	1.75	-4.48	-2.75	-3.03	EDETUX Elvpp.cot		
Estriol50-20-2272-354-015.02-2.70-1.51-2.12FlyIn setEstriol50-20-2771288.392.452.71-4.40-2.72-3.49FlyIn setEstrone53-16-7270.373.133.85-2.44-2.13-2.76FlyIn setEthanol64-17-546.07-0.31-0.17-3.10-3.20-2.73FlyIn setEthyl benzene100-41-4106.173.152.970.08-1.11-0.81FlyIn setEthyl ether60-29-774.120.890.90-1.80-2.52-2.15FlyIn setEthyl incotinate614-18-6151.171.321.10-2.18-2.68-2.73EDETOXHeptanoic acid111-14-8130.192.422.36-1.70-1.78-1.65FlyIn setIbuprofen15687-27-1206.293.973.69-1.44-1.14-1.37EDETOXIsoquinoline119-65-3129.162.081.91-1.78-2.01-1.89FlyIn setm-Cresol108-39-4108.141.962.06-1.82-1.97-1.74EDETOXMDA101-77-9198.271.592.21-2.64-2.78-3.08EDETOXMethanol67-56-13.204-0.77-0.64-3.30-3.44-2.91Flynn setMethyl nicotinate93-60-7137.140.830.66-2.47-2.95-2.94EDETOX <tr< td=""><td>Estradiol</td><td>299-42-3</td><td>272.30</td><td>4.01</td><td>3.82</td><td>-2.22</td><td>-2.91</td><td>-3.04</td><td>Flynn set</td></tr<>	Estradiol	299-42-3	272.30	4.01	3.82	-2.22	-2.91	-3.04	Flynn set		
Extrone53-16-7200.373.133.85-2.44-2.13-2.73Flynn setEthanol64-17-546.07-0.31-0.17-3.10-3.20-2.73Flynn setEthyl benzene100-41-4106.173.152.970.08-1.11-0.81Flynn setEthyl ther60-29-774.120.890.90-1.80-2.52-2.15Flynn setEthyl nicotinate614-18-6151.171.321.10-2.18-2.68-2.73EDETOXHeptanoic acid111-14-8130.192.422.36-1.70-1.78-1.65Flynn setIbuprofen15687-27-1206.293.973.69-1.44-1.14-1.37EDETOXIsoquinoline119-65-3129.162.081.91-1.78-2.01-1.89Flynn setm-Cresol108-39-4108.141.962.06-1.82-1.97-1.74EDETOXMDA101-77-9198.271.592.21-2.64-2.78-3.08EDETOXMeperidine57-42-1247.342.722.61-2.43-2.28-2.80Flynn setMethanol67-56-132.04-0.77-0.64-3.30-3.44-2.91Flynn setMethyl nicotinate93-60-7137.140.830.66-2.47-2.95-2.94EDETOXMethyl-h-toluamide67-26-132.04-0.77-0.64-3.30-3.81-4.64Flynn set<	Estracion	50-20-2	288 39	2.45	2 71	-4.40	_2 72	_3.49	Flynn set		
Ethanol64-17-546.07-0.31-0.07-3.10-3.20-2.73Flynn setEthyl benzene100-41-4106.173.152.970.08-1.11-0.81Flynn setEthyl ether60-29-774.120.890.90-1.80-2.52-2.15Flynn setEthyl icotinate614-18-6151.171.321.10-2.18-2.68-2.73EDETOXHeptanoic acid111-14-8130.192.422.36-1.70-1.78-1.65Flynn setIbuprofen15687-27-1206.293.973.69-1.44-1.14-1.37EDETOXIsoquinoline119-65-3129.162.081.91-1.78-2.01-1.89Flynn setm-Cresol108-39-4108.141.962.06-1.82-1.97-1.74EDETOXMDA101-77-9198.271.592.21-2.64-2.78-3.08EDETOXMethanol67-56-132.04-0.77-0.64-3.30-3.44-2.91Flynn setMethyl nicotinate93-60-7137.140.830.66-2.47-2.95-2.94EDETOXMethyl nicotinate99-76-3152.151.961.72-2.04-2.24-2.26Flynn setMorphine57-27-2285.350.891.01-5.03-3.81-4.64Flynn setMorphine57-27-2285.350.891.01-5.03-3.81-4.64Flynn set	Estrone	53-16-7	270 37	313	3.85	-2.44	-2.13	-2.76	Flynn set		
Ethyl benzene100-41-4106.173.152.970.08-1.11-0.81Flyn setEthyl ether60-29-774.120.890.90-1.80-2.52-2.15Flyn setEthyl nicotinate614-18-6151.171.321.10-2.18-2.68-2.73EDETOXHeptanoic acid111-14-8130.192.422.36-1.70-1.78-1.65Flyn setHexanoic acid142-62-1116.161.921.87-1.85-2.05-1.86Flyn setIbuprofen15687-27-1206.293.973.69-1.44-1.14-1.89EDETOXIsoquinoline119-65-3129.162.081.91-1.78-2.01-1.89EDETOXMDA101-77-9198.271.592.21-2.64-2.78-3.08EDETOXMeperidine57-42-1247.342.722.61-2.43-2.28-2.80Flyn setMethanol67-56-132.04-0.77-0.64-3.30-3.44-2.91Flyn setMethyl-icotinate93-60-7137.140.830.66-2.47-2.95-2.94EDETOXMethyl-icotinate93-60-7137.140.830.66-2.47-2.95-2.94EDETOXMethyl-indotinate93-60-7137.140.830.66-2.47-2.95-2.94EDETOXMothyl-indotinate93-60-7137.140.830.66-2.47-2.95-2.94EDETOX	Ethanol	64-17-5	46.07	-0.31	-0.17	-3.10	-3.20	-2.73	Flynn set		
Ethyl ether60-29-774.120.890.90-1.80-2.52-2.15Flyn setEthyl nicotinate614-18-6151.171.321.10-2.18-2.68-2.73EDETOXHeptanoic acid111-14-8130.192.422.36-1.70-1.78-1.65Flynn setHexanoic acid142-62-1116.161.921.87-1.85-2.05-1.86Flynn setIbuprofen15687-27-1206.293.973.69-1.44-1.14-1.89Flynn setIsoquinoline119-65-3129.162.081.91-1.78-2.01-1.89Flynn setm-Cresol108-39-4108.141.962.06-1.82-1.97-1.74EDETOXMDA101-77-9198.271.592.21-2.64-2.78-3.08EDETOXMethanol67-56-132.04-0.77-0.64-3.30-3.44-2.91Flynn setMethyl nicotinate93-60-7137.140.830.66-2.47-2.95-2.94EDETOXMethyl-4-hydroxy benzoate99-76-3152.151.961.72-2.04-2.24-2.64Flynn setMorphine57-27-228.550.891.01-5.03-3.81-4.64Flynn setMorphine57-27-228.550.891.01-5.03-3.81-4.64Flynn setN,N-Diethyl-m-toluamide134-62-3191.282.182.45-2.89-2.32-2.55<	Ethyl benzene	100-41-4	106.17	3.15	2.97	0.08	-1.11	-0.81	Flynn set		
Ethyl nicotinate614-18-6151.171.321.10-2.18-2.68-2.73EDETOXHeptanoic acid111-14-8130.192.422.36-1.70-1.78-1.65Flynn setHexanoic acid142-62-1116.161.921.87-1.85-2.05-1.86Flynn setIbuprofen15687-27-1206.293.973.69-1.44-1.14-1.37EDETOXIsoquinoline119-65-3129.162.081.91-1.78-2.01-1.89Flynn setm-Cresol108-39-4108.141.962.06-1.82-1.97-1.74EDETOXMDA101-77-9198.271.592.21-2.64-2.78-3.08EDETOXMeperidine57-42-1247.342.722.61-2.43-2.28-2.80Flynn setMethanol67-56-132.04-0.77-0.64-3.30-3.44-2.91Flynn setMethyl nicotinate93-60-7137.140.830.66-2.47-2.95-2.94EDETOXMethyl-4-hydroxy benzoate99-76-3152.151.961.72-2.04-2.24-2.64Flynn setMorphine57-27-228.550.891.01-5.03-3.81-4.64Flynn setN,N-Diethyl-m-toluamide134-62-3191.282.182.45-2.89-2.32-2.55EDETOXNaproxen2204-53-1230.273.183.07-2.54-1.85-2.25 <td< td=""><td>Ethyl ether</td><td>60-29-7</td><td>74.12</td><td>0.89</td><td>0.90</td><td>-1.80</td><td>-2.52</td><td>-2.15</td><td>Flynn set</td></td<>	Ethyl ether	60-29-7	74.12	0.89	0.90	-1.80	-2.52	-2.15	Flynn set		
Heptanoic acid111-14-8130.192.422.36-1.70-1.78-1.65Flynn setHexanoic acid142-62-1116.161.921.87-1.85-2.05-1.86Flynn setIbuprofen15687-27-1206.293.973.69-1.44-1.14-1.37EDETOXIsoquinoline119-65-3129.162.081.91-1.78-2.01-1.89Flynn setm-Cresol108-39-4108.141.962.06-1.82-1.97-1.74EDETOXMDA101-77-9198.271.592.21-2.64-2.78-3.08EDETOXMeperidine57-42-1247.342.722.61-2.43-2.28-2.80Flynn setMethanol67-56-132.04-0.77-0.64-3.30-3.44-2.91Flynn setMethyl nicotinate93-60-7137.140.830.66-2.47-2.95-2.94EDETOXMethyl-4-hydroxy benzoate99-76-3152.151.961.72-2.04-2.24-2.26Flynn setMorphine57-27-2285.350.891.01-5.03-3.81-4.64Flynn setN,N-Diethyl-m-toluamide134-62-3191.282.182.45-2.89-2.32-2.55EDETOXNaproxen22204-53-1230.273.183.07-2.54-1.85-2.25Flynn set	Ethyl nicotinate	614-18-6	151.17	1.32	1.10	-2.18	-2.68	-2.73	EDETOX		
Hexanoic acid142-62-1116.161.921.87-1.85-2.05-1.86Flynn setIbuprofen15687-27-1206.293.973.69-1.44-1.14-1.37EDETOXIsoquinoline119-65-3129.162.081.91-1.78-2.01-1.89Flynn setm-Cresol108-39-4108.141.962.06-1.82-1.97-1.74EDETOXMDA101-77-9198.271.592.21-2.64-2.78-3.08EDETOXMeperidine57-42-1247.342.722.61-2.43-2.28-2.80Flynn setMethanol67-56-132.04-0.77-0.64-3.30-3.44-2.91Flynn setMethyl nicotinate93-60-7137.140.830.66-2.47-2.95-2.94EDETOXMethyl-4-hydroxy benzoate99-76-3152.151.961.72-2.04-2.24-2.26Flynn setMorphine57-27-2285.350.891.01-5.03-3.81-4.64Flynn setN,N-Diethyl-m-toluamide134-62-3191.282.182.45-2.89-2.32-2.55EDETOXNaproxen22204-53-1230.273.183.07-2.54-1.85-2.25Flynn set	Heptanoic acid	111-14-8	130.19	2.42	2.36	-1.70	-1.78	-1.65	Flynn set		
Ibuprofen15687-27-1206.293.973.69-1.44-1.14-1.37EDETOXIsoquinoline119-65-3129.162.081.91-1.78-2.01-1.89Flyn setm-Cresol108-39-4108.141.962.06-1.82-1.97-1.74EDETOXMDA101-77-9198.271.592.21-2.64-2.78-3.08EDETOXMeperidine57-42-1247.342.722.61-2.43-2.28-2.80Flyn setMethanol67-56-132.04-0.77-0.64-3.30-3.44-2.91Flyn setMethyl nicotinate93-60-7137.140.830.66-2.47-2.95-2.94EDETOXMethyl-4-hydroxy benzoate99-76-3152.151.961.72-2.04-2.24-2.26Flyn setMorphine57-27-2285.350.891.01-5.03-3.81-4.64Flyn setN,N-Diethyl-m-toluamide134-62-3191.282.182.45-2.89-2.32-2.55EDETOXNaproxen22204-53-1230.273.183.07-2.54-1.85-2.25Flyn set	Hexanoic acid	142-62-1	116.16	1.92	1.87	-1.85	-2.05	-1.86	Flynn set		
Isoquinoline119-65-3129.162.081.91-1.78-2.01-1.89Flyn setm-Cresol108-39-4108.141.962.06-1.82-1.97-1.74EDETOXMDA101-77-9198.271.592.21-2.64-2.78-3.08EDETOXMeperidine57-42-1247.342.722.61-2.43-2.28-2.80Flyn setMethanol67-56-132.04-0.77-0.64-3.30-3.44-2.91Flyn setMethyl nicotinate93-60-7137.140.830.66-2.47-2.95-2.94EDETOXMethyl-4-hydroxy benzoate99-76-3152.151.961.72-2.04-2.24-2.26Flyn setMorphine57-27-2285.350.891.01-5.03-3.81-4.64Flyn setN,N-Diethyl-m-toluamide134-62-3191.282.182.45-2.89-2.32-2.55EDETOXNaproxen22204-53-1230.273.183.07-2.54-1.85-2.25Flyn set	Ibuprofen	15687-27-1	206.29	3.97	3.69	-1.44	-1.14	-1.37	EDETOX		
m-cresol108-39-4108.141.962.06-1.82-1.97-1.74EDETOXMDA101-77-9198.271.592.21-2.64-2.78-3.08EDETOXMeperidine57-42-1247.342.722.61-2.43-2.28-2.80Flyn setMethanol67-56-132.04-0.77-0.64-3.30-3.44-2.91Flyn setMethyl nicotinate93-60-7137.140.830.66-2.47-2.95-2.94EDETOXMethyl-4-hydroxy benzoate99-76-3152.151.961.72-2.04-2.24-2.26Flyn setMorphine57-27-2285.350.891.01-5.03-3.81-4.64Flyn setN,N-Diethyl-m-toluamide134-62-3191.282.182.45-2.89-2.32-2.55EDETOXNaproxen22204-53-1230.273.183.07-2.54-1.85-2.25Flyn set	Isoquinoline	119-65-3	129.16	2.08	1.91	-1.78	-2.01	-1.89	Flynn set		
MDA101-7/-9198.271.592.21-2.64-2.78-3.08EDETOXMeperidine57-42-1247.342.722.61-2.43-2.28-2.80Flyn setMethanol67-56-132.04-0.77-0.64-3.30-3.44-2.91Flyn setMethyl nicotinate93-60-7137.140.830.66-2.47-2.95-2.94EDETOXMethyl-4-hydroxy benzoate99-76-3152.151.961.72-2.04-2.24-2.26Flyn setMorphine57-27-2285.350.891.01-5.03-3.81-4.64Flyn setN,N-Diethyl-m-toluamide134-62-3191.282.182.45-2.89-2.32-2.55EDETOXNaproxen22204-53-1230.273.183.07-2.54-1.85-2.25Flyn set	m-Cresol	108-39-4	108.14	1.96	2.06	-1.82	-1.97	-1.74	EDETOX		
Meperiame57-42-1247.342.722.01-2.43-2.28-2.80Flyn setMethanol67-56-132.04-0.77-0.64-3.30-3.44-2.91Flyn setMethyl nicotinate93-60-7137.140.830.66-2.47-2.95-2.94EDETOXMethyl-4-hydroxy benzoate99-76-3152.151.961.72-2.04-2.24-2.26Flynn setMorphine57-27-2285.350.891.01-5.03-3.81-4.64Flynn setN,N-Diethyl-m-toluamide134-62-3191.282.182.45-2.89-2.32-2.55EDETOXNaproxen22204-53-1230.273.183.07-2.54-1.85-2.25Flynn set	Monoridino	101-77-9	198.27	1.59	2.21	-2.64	-2.78	-3.08	EDEIUX		
Methallor07-50-132.04-0.77-0.04-5.30-5.44-2.91FlyIn SetMethyl nicotinate93-60-7137.140.830.66-2.47-2.95-2.94EDETOXMethyl-4-hydroxy benzoate99-76-3152.151.961.72-2.04-2.24-2.26Flynn setMorphine57-27-2285.350.891.01-5.03-3.81-4.64Flynn setN,N-Diethyl-m-toluamide134-62-3191.282.182.45-2.89-2.32-2.55EDETOXNaproxen22204-53-1230.273.183.07-2.54-1.85-2.25Flynn set	Methanol	57-42-1 67-56-1	247.34	2.72	2.01	-2.43	-2.28	-2.8U 2.01	Flypp cet		
Methyl-4-hydroxy benzoate99-76-3152.151.961.72-2.04-2.24-2.26Flynn setMorphine57-27-2285.350.891.01-5.03-3.81-4.64Flynn setN,N-Diethyl-m-toluamide134-62-3191.282.182.45-2.89-2.32-2.55EDETOXNaproxen22204-53-1230.273.183.07-2.54-1.85-2.25Flynn set	Methyl nicotinate	93-60-7	13714	-0.77	-0.04	-5.50	-3.44 -2.95	-2.91	FDFTOX		
Morphine57-27-2285.350.891.01-5.03-3.81-4.64Flynn setN,N-Diethyl-m-toluamide134-62-3191.282.182.45-2.89-2.32-2.55EDETOXNaproxen22204-53-1230.273.183.07-2.54-1.85-2.25Flynn set	Methyl-4-hydroxy benzoate	99-76-3	152.14	196	172	-2.47	-2.33	-2.26	Flynn set		
N,N-Diethyl-m-toluamide 134-62-3 191.28 2.18 2.45 -2.89 -2.32 -2.55 EDETOX Naproxen 22204-53-1 230.27 3.18 3.07 -2.54 -1.85 -2.25 Flynn set	Morphine	57-27-2	285.35	0.89	1.01	-5.03	-3.81	-4.64	Flvnn set		
Naproxen 22204-53-1 230.27 3.18 3.07 -2.54 -1.85 -2.25 Flynn set	N,N-Diethyl-m-toluamide	134-62-3	191.28	2.18	2.45	-2.89	-2.32	-2.55	EDETOX		
	Naproxen	22204-53-1	230.27	3.18	3.07	-2.54	-1.85	-2.25	Flynn set		

(continued on next page)

Table 1 (continued)

Material name	CAS	MW	log K _{ow}		log K _p (cm	/h)		Source
			Exp.	Est.	Exp.	Guy's Eq.	RIFM's Eq.	
n-Butanol	71-36-3	74.12	0.88	0.86	-2.60	-2.53	-2.16	Flynn set
n-Decanol	112-30-1	158.29	4.57	3.90	-1.10	-0.42	-0.35	Flynn set
n-Heptanol	111-70-6	116.21	2.62	2.37	-1.50	-1.55	-1.33	Flynn set
n-Hexanol	111-27-3	102.18	2.03	1.87	-1.89	-1.88	-1.61	Flynn set
N-Hexyl nicotinate	23597-82-2	207.27	3.51	3.06	-1.75	-1.47	-1.73	EDETOX
Nicotine	54-11-5	162.24	1.17	1.14	-2.48	-2.86	-2.98	Flynn set
Nicotinic acid	59-67-6	123.11	0.36	0.22	-4.62	-3.20	-3.13	EDETOX
Nitroglycerine	100292-13-5	227.09	1.62	1.61	-1.96	-2.94	-3.40	Flynn set
n-Nonanol	143-08-8	144.26	3.77	3.38	-1.22	-0.90	-0.79	Flynn set
n-Octanol	111-87-5	130.23	3.00	2.88	-1.28	-1.36	-1.21	Flynn set
n-Pentanol	71-41-0	88.15	1.51	1.38	-2.22	-2.17	-1.84	Flynn set
n-Propanol	71-23-8	60.10	0.25	0.35	-2.85	-2.89	-2.47	Flynn set
o-Cresol	95-48-7	108.14	1.95	2.05	-1.80	-1.98	-1.75	EDETOX
Octanoic acid	124-07-2	144.22	3.05	2.86	-1.60	-1.41	-1.34	Flynn set
Parathion	56-38-2	291.26	3.83	3.43	-3.72	-1.76	-2.48	EDETOX
p-Cresol	106-44-5	108.14	1.94	2.06	-1.76	-1.98	-1.75	EDETOX
Pentanoic acid	109-52-4	102.13	1.39	1.38	-2.70	-2.34	-2.10	Flynn set
Phenobarbital	11097-06-6	232.24	1.47	1.35	-3.34	-3.07	-3.57	Flynn set
Phenol	108-95-2	94.11	1.46	1.55	-2.09	-2.24	-1.95	Flynn set
Pregnenolone	145-13-1	316.49	4.22	3.80	-2.82	-1.63	-2.48	Flynn set
Progesterone	57-83-0	314.47	3.87	3.87	-2.82	-1.87	-2.72	Flynn set
Propoxur	114-26-1	209.25	1.52	2.04	-2.59	-2.90	-3.26	EDETOX
Propranolol	525-66-6	259.35	3.48	2.80	-2.77	-1.81	-2.37	EDETOX
Resorcinol	108-46-3	110.11	0.80	1.13	-3.62	-2.80	-2.64	Flynn set
Salicylic acid	69-72-7	138.12	2.26	1.91	-1.86	-1.94	-1.86	Flynn set
Scopolamine	51-34-3	303.36	0.98	1.01	-4.30	-3.85	-4.78	Flynn set
Styrene	100-42-5	104.15	2.95	2.72	-0.19	-1.24	-0.94	Flynn set
Testosterone	58-22-0	288.43	3.32	3.29	-2.66	-2.10	-2.83	Flynn set
Thymol	89-83-8	150.22	3.30	3.32	-1.28	-1.27	-1.22	Flynn set
Toluene	108-88-3	92.14	2.73	2.48	0.00	-1.32	-0.97	Flynn set
Trichloromethane	67-66-3	119.38	1.97	1.84	-1.80	-2.03	-1.86	EDETOX
Trimethylamine	75-50-3	59.11	0.16	0.17	-3.72	-2.95	-2.53	EDETOX

exp. = experimentally determined, est. = estimated.

Before applying Potts and Guy's equation (Potts and Guy, 1992), we refined the parameters by re-running the multiple linear regression based on the data set I. As mentioned above, data set I contains 105 materials falling within the fragrance chemical space with experimentally determined **log** K_{ow} and K_p . Specifically, the independent variables are **log** K_{ow} and MW, the dependent variable is the **log** K_p . Least square was performed to fit the parameters of the linear equation. The updated Eq. (3) with newly fitted parameters was used to calculate **log** K_p for the materials falling in the fragrance chemical space.

$$\log K_{p}(cm/h) = -1.95 + 0.759 \times \log K_{ow} - 0.0118 \times MW$$
(3)

 $(n = 105, r^2 = 0.703, SE = 0.594, F = 120.56)$

Note that the standard error of estimation (SE) of the above equation (Eq. (3)) is 0.594. For conservative purposes, this number is added to the predicted **log** K_p before using it to calculate the J_{max} . Therefore, the following Eq. (4) is used to estimate the conservative K_p :

$$\log K_p(cm/h) = -1.356 + 0.759 \times \log K_{ow} - 0.0118 \times MW$$
(4)

It is worth noting that the viable skin layers beneath the stratum corneum could contribute to the penetration rate for very lipophilic chemicals. Cleek and Bunge (1993) took this into consideration and proposed the algebraic Eq. (5) to modify for K_p . Taking this into consideration, Eq. (1) is more correctly stated as Eq. (6).

$$K_p^{corr}(cm/h) = \frac{K_p}{1 + \frac{K_p \times \sqrt{MW}}{2.6}}$$
(5)

$$J_{max}(\mu g/cm^2/h) = K_p^{corr}(cm/h) \times C_{water}^{sat}(\mu g/cm^3)$$
(6)

2.3.2. Calculate log Kow

As shown in Eq. (4), the K_p is calculated based on log K_{ow} and MW. If the experimental log Kow is unknown, different QSAR prediction models could be used to calculate the $\log K_{ow}$. There are two key factors for a QSAR model, molecular descriptors and training algorithms. Molecular descriptors are a series of parameters calculated based on molecular structure, which can be understood by a mathematics algorithm. The training algorithm is the core of building a OSAR model. Different molecular descriptors and algorithms could build OSAR models with different preferences and performance. It has been suggested that using a consensus model based on the average prediction of different models could yield more accurate results than individual models (Mannhold et al., 2009; Tetko et al., 2009). Therefore, in this work, seven different models with different algorithms and descriptors are used to compose a consensus model (Table 3). The seven models were selected based on molecular descriptor, modeling algorithm, training set, and accessibility. The idea is to cover different models with diverse descriptors, algorithms and training sets to obtain a more representative outcome. These seven models were also validated in their original papers with a high accuracy. The average value of the seven predictions is used as the final output of the predicted log Kow.

2.3.3. Calculate water solubility (C_{water}^{Sat})

As shown in Eq. (1), another parameter for calculating J_{max} is the saturated water solubility (C_{water}^{sat}) in the units of mg/L, which equals $\mu g/cm^3$. Like the **log** K_{ow} , when experimental data is lacking, the consensus prediction from four different QSAR models is used to estimate the water solubility (*S*) in the units of mol/L (Table 4). However, one should note that the water solubility models are not as accurate as those of **log** K_{ow} . The root-mean-square

Table 2

Estimated and experimentally determined skin absorption values for 131 fragrance and fragrance like materials.

ID	Material name	CAS	MW	log K _{ow}	Cwater Sat	log K _p	Kp	<i>K</i> _p ^{corr}	Jmax	Absorption (%)			
					(µg/cm ³)		(cm/h)	(cm/h)	$(\mu g/cm^2/h)$	Est.	Exd.	Source	
	N# 11.	04.44.4	204.24	4.000	1.02	1 5 5 0	0.565.00	0.005.00	0.04				
1	Musk ketone	81-14-1	294.31	4.30ª	1.9ª	-1.559	2./6E-02	2.33E-02	0.04	10	0.5	RIFM DD	
2	1-(12345678-Octabydro-2388-	54464-57-2	240.4	4.20	4J.2 60	-0.846	1.30E-02	775F-02	4 65	40	16.51	RIFM Db	
5	tetramethyl-2-	54104 57 2	234,50	1,51	00	0.040	1.452-01	1.151-02	4.05	40	10.51		
	naphthalenyl)ethanone												
4	6-Acetyl-1,1,2,4,4,7-	21145-77-7	258.41	5.70 ^a	1.3ª	-0.073	8.45E-01	1.36E-01	0.17	40	0.88	EDETOX	
	hexamethyltetraline												
5	Farnesol	4602-84-0	222.37	4.75	27.6	-0.366	4.31E-01	1.24E-01	3.42	40	39.8	RIFM Db	
6	1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8-	1222-05-5	258.41	5.90 ^a	1.8ª	0.079	1.20E+00	1.43E-01	0.25	40	5.16	RIFM Db	
	hexamethylcyclopenta-γ-2-												
7	benzopyran Usandaina analdahada	101.00.0	216.22	4.00	25.2	0.240	4 405 01	1 275 01	2.21	40	0.54	DIEMO	
/	α -Hexylcinnamaldehyde	101-86-0	216.33	4.68	25.3	-0.348	4.49E-01	1.2/E-01	3.21	40	9.54	RIFM DD	
0	aldebyde	80-34-0	204.31	4.07	42.7	-0.071	2.15E-01	9.02E-02	4.19	40	20	KIPWI DD	
9	Benzyl benzoate	120-51-4	212.25	3 97ª	1671	-0.841	144E-01	797E-02	13 32	80	712	RIFM Db	
0	Benzoic acid	120 01 1	122.12	1.87ª	3400 ^a	-1.602^{a}	2.50E-02	2.26E-02	76.84	00	, 112	10111120	
	Benzyl alcohol		108.14	1.10 ^a	42900 ^a	-2.220 ^a	6.03E-03	5.88E-03	252.41				
10	Benzyl salicylate	118-58-1	228.25	3.74	357.8	-1.209	6.18E-02	4.54E-02	16.26	80	15	RIFM Db	
	2-Hydroxybenzoic acid		138.12	2.26 ^a	2240 ^a	-1.860 ^a	1.38E-02	1.30E-02	29.10				
	Benzyl alcohol		108.14	1.10 ^a	42900 ^a	-2.220 ^a	6.03E-03	5.88E-03	252.41				
11	Amyl salicylate	2050-08-0	208.26	4.00	421.1	-0.774	1.68E-01	8.70E-02	36.62	80	10.3	RIFM Db	
	2-Hydroxybenzoic acid		138.12	2.26 ^a	2240 ^a	-1.860 ^a	1.38E-02	1.30E-02	29.10				
	Amyl alcohol		88.15	1.51ª	22000 ^a	-2.220ª	6.03E-03	5.90E-03	129.74		_		
12	d-Limonene	5989-27-5	136.24	4.384	13.84	0.361	2.30E+00	2.03E-01	2.80	40	5	RIFM Db	
13	Butyl salicylate	2052-14-4	194.23	4.63*	1326.9	-0.134	7.35E-01	1.49E-01	197.43	80	17.1	RIFM DD	
	2-Hydroxybenzoic acia		138.12	2.26"	2240ª	-1.860"	1.38E-02	1.30E-02	29.10				
14	a Mathul 12 hanzadiavala 5	1205 17 0	102.22	0.00	1200	-2.000-	2.31E-03	2.49E-03	12 20	80	50.1	PIEM Db	
14	nronionaldebyde	1205-17-0	192.22	2.14	1590	-1.990	1.011-02	9.J/E-05	15.50	80	50.1	KIPWI DD	
15	Methyl dibydroiasmonate	24851-98-7	226 32	2 80	280ª	-1 899	126F-02	118F-02	3 29	80	45 9	RIFM Db	
15	(3-oxo-2-pentylcyclopentyl)acetic acid	21031 30 7	212.29	2.59	5547	-1.896	1.27E-02	1.19E-02	65.76	00	15.5	Kill M DD	
	Methanol		32.04	-0.77 ^a	1000000ª	-3.300 ^a	5.01E-04	5.01E-04	500.64				
16	Safrole	94-59-7	162.19	2.80	592.2	-1.142	7.21E-02	5.33E-02	31.56	80	38.4	EDETOX	
17	Isoeugenol	97-54-1	164.21	3.04 ^a	1164	-0.986	1.03E-01	6.84E-02	79.63	80	38.4	RIFM Db	
18	2-Methoxy-4-propylphenol	2785-87-7	166.22	2.94	1531	-1.085	8.21E-02	5.84E-02	89.36	80	22.6	RIFM Db	
19	2-Methoxy-4-vinylphenol	7786-61-0	150.18	2.20	2585.2	-1.455	3.51E-02	3.01E-02	77.85	80	38.4	RIFM Db	
20	dl-Citronellol	106-22-9	156.27	3.91 ^a	575	-0.232	5.86E-01	1.53E-01	88.26	80	4.7	RIFM Db	
21	Eugenyl methyl ether	93-15-2	178.23	2.94	500 ^a	-1.231	5.87E-02	4.51E-02	22.56	80	49.7	RIFM Db	
22	Dihydromyrcenol	18479-58-8	156.27	3.11	1177.2	-0.839	1.45E-01	8.54E-02	100.49	80	5.67	RIFM Db	
23	Coumarin	91-64-5	146.15	1.39 ^a	1900 ^a	-2.040 ^a	9.12E-03	8.75E-03	16.62	80	59.7	RIFM Db	
24	Dihydro- α -terpineol	498-81-7	156.27	2.97	1656.3	-0.943	1.14E-01	7.37E-02	122.06	80	3.5	RIFM Db	
25	Acetic acid	140-11-4	150.18 60.05	0.174	3100	-1.040	2.29E-02	2.07E-02	64.03	80	/8./	KIFIVI DD	
	Renzyl alcohol		108.14	-0.17 110ª	420004	2.194	6.03E_03	5.88E-03	252 /1				
26	Fugenol	97-53-0	164 21	2.10	2460ª	-2.220	2.69F-02	2 37F-02	58 37	80	22.6	RIFM Db	
27	Cinnamic acid	621-82-9	14816	2.27 2.13ª	570 ^a	-1488	3 25E-02	2.37E 02	16.09	80	60.8	RIFM Db	
28	Diethyl malonate	105-53-3	160.17	0.96 ^a	23200ª	-2.517	3.04E-03	2.99E-03	69.46	80	54.3	EDETOX	
	Malonic acid		104.06	-0.81ª	763000 ^a	-3.199	6.33E-04	6.31E-04	481.67				
	Ethyl alcohol		46.07	-0.31 ^a	1000000 ^a	-3.100 ^a	7.94E-04	7.93E-04	792.68				
	Ethyl hydrogen malonate		132.12	0.14	280141.3	-2.807	1.56E-03	1.55E-03	434.21				
29	Benzoic acid	65-85-0	122.12	1.87ª	3400 ^a	-1.602 ^a	2.50E-02	2.26E-02	76.85	80	60.6	EDETOX	
30	Methyl salicylate	119-36-8	152.15	2.55ª	700 ^a	-1.216	6.08E-02	4.72E-02	33.04	80	30.7	RIFM Db	
	2-Hydroxybenzoic acid		138.12	2.26 ^a	2240 ^a	-1.860 ^a	1.38E-02	1.30E-02	29.10				
	Methanol		32.04	-0.77 ^a	1000000ª	-3.300ª	5.01E-04	5.01E-04	500.64				
31	Geraniol	106-24-1	154.25	3.474	5314	-0.542	2.87E-01	1.21E-01	64.26	80	7.3	RIFM Db	
32	Linalool	/8-/0-6	154.25	2.974	1590ª	-0.922	1.20E-01	7.62E-02	121.08	80	14.4	RIFM DD	
24	Z-HydroxyDelizoic acid	104 54 1	120.12	1.054	2240-	-1.600-	1.36E-02	1.50E-02	29.10	80	65.0	PIEM Db	
35		104-54-1	134.10	1.55	267004	-1.439 2.870ª	135E_03	134E-02	35.80	80	50.3	FDFTOX	
36	Phenethyl alcohol	60-12-8	122.17	1.10 1.36ª	20700 22200ª	-1.765	1.55E-05	1.54L-05	35514	80	76	RIFM Db	
37	Benzyl alcohol	100-51-6	10814	1.50 1.10 ^a	42900 ^a	-2.220^{a}	6.03E-03	5.88E-03	252.41	80	14 97	EDETOX	
38	3 and 4-(4-Hydroxy-4-	31906-04-4	210.32	2.56	6100ª	-1.896	1.27E-02	1.19E-02	72.41	80	36.4	RIFM Db	
50	methylpentyl)-3-cvclohexene-1-			2.50							• •		
	carboxaldehyde												
39	Phenol	108-95-2	94.11	1.46 ^a	82800 ^a	-2.090 ^a	8.13E-03	7.89E-03	653.21	80	47.1	EDETOX	
40	Ethyl alcohol	64-17-5	46.07	-0.31 ^a	100000 ^a	-3.100 ^a	7.94E-04	7.93E-04	792.68	80	21.17	EDETOX	
41	Geranyl nitrile	5146-66-7	149.24	3.24	373.2	-0.654	2.22E-01	1.09E-01	40.52	80	5.05	RIFM Db	
42	Trichloromethyl phenyl carbinyl	90-17-5	267.54	3.43	393.7	-1.907	1.24E-02	1.15E-02	4.52	40	5	RIFM Db	
	acetate												
	Acetic acid		60.05	-0.17 ^a	100000ª	-2.194	6.40E-03	6.28E-03	6283.04				
	2,2,2-trichloro-1-phenylethanol		225.5	2.86	2123.4	-1.849	1.42E-02	1.31E-02	27.81				
										1000-	incred c	an anat an arana `	

(continued on next page)

Table 2 (continued)

ID	Material name	CAS	MW	log K _{ow}	C _{water} Sat	log K _p	Kp	<i>K</i> _p ^{corr}	Jmax	Absorption (%)			
					(µg/cm ³)		(cm/h)	(cm/h)	$(\mu g/cm^2/h)$	Est.	Exp.	Source	
43	Methyl atrarate 2,4-dihydroxy-3,6-dimethylbenzoic	4707-47-5	196.2 182.18	2.56 2.19	11039.9 26284.3	-1.729 -1.843	1.87E-02 1.43E-02	1.70E-02 1.33E-02	187.25 350.88	80	20	RIFM Db	
	Methanol		32.04	-0.77ª	1000000 ^a	-3.300 ^a	5.01E-04	5.01E-04	500.64				
44	Lactic acid	50-21-5	90.08	-0.72 ^a	1000000 ^a	-2.965	1.08E-03	1.08E-03	1078.61	80	10.12	RIFM Db	
45 46	2-Methyl-2-propanol Triothanolamino	/5-65-0	/4.12	0.35ª	1000000ª	-1.965	1.08E-02	1.05E-02	10464.50	80	2	RIFM DD	
40 47	Diethyl maleate	102-71-0	149.19	-1.00" 1.30	14000ª	-3.875	1.33E-04 4.00F_03	1.33E-04 3.92E-03	133.13 54.91	80 80	6.9 54	RIFIVI DD	
47	Maleic acid	141-05-5	116.07	0.46^{a}	7000 ^a	-2.336	4.00L-03	413E-03	28 91	00	54	KII WI DD	
	Ethyl alcohol		46.07	-0.31ª	1000000 ^a	-3.100 ^a	7.94E-04	7.93E-04	792.68				
	4-ethoxy-4-oxobut-2-enoic acid		144.13	0.66	265639.8	-2.556	2.78E-03	2.75E-03	729.67				
48	2-Ethyl-1-hexanol	104-76-7	130.23	2.69	880 ^a	-0.853	1.40E-01	8.69E-02	76.46	80	5.2	RIFM Db	
49	1-Decanol	112-30-1	158.29	4.57ª	37ª	-1.100 ^a	7.94E-02	5.74E-02	2.12	40	0.02	RIFM Db	
50	Octanoic acid	124-07-2	144.22	3.05 ^a	789 ^a	-1.600 ^a	2.51E-02	2.25E-02	17.76	80	1.77	RIFM Db	
51	Lauric acid	143-07-7	200.32	4.60 ^a	4.8ª	-0.228	5.91E-01	1.40E-01	0.67	40	0.164	RIFM Db	
52	Methyl 2-nonynoate	111-80-8	168.24	3.57	151.2	-0.628	2.35E-01	1.08E-01	16.37	80	5	RIFM DD	
54	Diethyl phthalate	140-07-0 84_66_2	146.21	5.06 2.42ª	1/0-	-0.764	1.72E-01 722E-03	9.33E-02	7.48	80 40	17	RIEM DD	
54	phthalic acid	84-00-2	16613	0.73^{a}	6970 ^a	-2.762	173E-03	171E-03	11.95	40	4.7	KII WI DD	
	Ethvl alcohol		46.07	-0.31 ^a	1000000 ^a	-3.100 ^a	7.94E-04	7.93E-04	792.68				
	2-(ethoxycarbonyl)benzoic acid		194.19	1.80	9794.3	-2.282	5.22E-03	5.08E-03	49.78				
55	1,6 Hexanediol diglycidyl ether	16096-31-4	230.31	1.08	37892.4	-3.251	5.61E-04	5.59E-04	21.19	80	37.8	EDETOX	
56	17a-Hydroxyprogesterone	68-96-2	330.47	3.17 ^a	429.3	-3.220 ^a	6.03E-04	6.00E-04	0.26	40	14.76	EDETOX	
57	1-Methoxypropan-2-ol	107-98-2	90.12	-0.21	1000000 ^a	-2.576	2.66E-03	2.63E-03	2630.55	80	2.29	EDETOX	
58	2,4-Dichlorophenoxyacetic acid	94-75-7	221.04	2.81ª	677 ^a	-1.831	1.47E-02	1.36E-02	9.20	40	1.2	EDETOX	
59	2-Butoxyethanol	111-76-2	118.18	0.83ª	1000000ª	-3.670 ^a	2.14E-04	2.14E-04	213.61	80	27.39	EDETOX	
60 61	2-Ethoxyethanol	110-80-5	90.12	-0.32ª	1000000ª	-3.600ª	2.51E-04	2.51E-04	250.96	80	1 /.8 1 5 5	EDETOX	
62	2-Isopropoxyemanor	109-59-1	104.15	0.05	10000004	-3.337" 2.734	4.40E-04 1.85E_03	4.39E-04 1.83E_03	438.78	80 80	1.55	EDETOX	
02	Acetic acid	110-45-0	60.05	-0.17^{a}	1000000 1000000ª	-2.754	6.40F-03	6.28F-03	6283.04	00	5.57	LDLIOX	
	Ethylene glycol methyl ether		76.1	-0.77 ^a	1000000 ^a	-2.838	1.45E-03	1.44E-03	1443.71				
63	2-Naphthylamine	91-59-8	143.19	2.28 ^a	1142.7	-1.315	4.84E-02	3.96E-02	45.23	80	54.1	EDETOX	
64	2-Nitro-4-Phenylenediamine	5307-14-2	153.14	0.53 ^a	25047.2	-2.761	1.73E-03	1.72E-03	43.09	80	21.7	EDETOX	
65	2-phenylphenol	90-43-7	170.21	3.09 ^a	700 ^a	-1.800 ^a	1.58E-02	1.47E-02	10.28	80	26.67	EDETOX	
66	4-Acetamidophenol	103-90-2	151.17	0.46 ^a	14000 ^a	-2.791	1.62E-03	1.61E-03	22.50	80	3.7	EDETOX	
67	4-Amino-2-nitrophenol	119-34-6	154.13	0.96 ^a	17855.3	-2.446	3.58E-03	3.52E-03	62.85	80	45.1	EDETOX	
68	4-Aminobenzoic acid	150-13-0	137.14	0.834	6110 ^a	-2.344	4.53E-03	4.44E-03	27.10	80	28.37	EDETOX	
69 70	4-Aminophenol	123-30-8	109.13	1.604	17542.2	-2.613	2.44E-03	2.41E-03	38.59	80	8.1 46	EDETOX	
70	4-Cyallophenoi 4-Dimethylaminobenzene	60-11-7	225.3	4 58ª	36.9	-0.538	2.04E-02	2.33E-02	444.07	40	2157	EDETOX	
72	4-Heptyloxyphenol	13037-86-0	208.3	4.39	118.9	-0.483	3.29E-01	1.16E-01	13.85	80	36	EDETOX	
73	4-Iodophenol	540-38-5	220.01	2.91ª	4271.7	-1.743	1.81E-02	1.64E-02	69.92	80	28	EDETOX	
74	4-Nitroaniline	100-01-6	138.13	1.39 ^a	12857.9	-1.931	1.17E-02	1.11E-02	143.16	80	48	EDETOX	
75	4-Nitrophenol	100-02-7	139.11	1.91 ^a	11600 ^a	-1.548	2.83E-02	2.51E-02	291.17	80	41	EDETOX	
76	4-Pentyloxyphenol	18979-53-8	180.25	3.50 ^a	693.6	-0.826	1.49E-01	8.42E-02	58.44	80	29	EDETOX	
77	Acetylcysteine	616-91-1	163.19	-0.46	888507.8	-3.628	2.35E-04	2.35E-04	208.90	80	40.5	EDETOX	
/8	Acetylsalicylic acid	50-78-2	180.16	1.19ª	4600ª	-2.140ª	7.24E-03	6.98E-03	32.12	80	31.2	EDETOX	
	Acetic uciu 2-Hydroxybenzoic acid		13812	-0.17ª 2.26ª	2240ª	-2.194 -1.860a	0.40E-03 1 38E_02	0.28E-03 1 30F-02	0283.04 29.10				
79	Androstenedione	63-05-8	286.42	2.75 ^a	322.8	-2.649	2.25E-03	2.21E-03	0.71	40	13.47	EDETOX	
80	Aniline	62-53-3	93.13	0.90 ^a	36000 ^a	-1.772	1.69E-02	1.59E-02	572.84	80	37.6	EDETOX	
81	Atrazine	1912-24-9	215.69	2.61 ^a	34.7 ^a	-1.920	1.20E-02	1.13E-02	0.39	40	3.5	EDETOX	
82	Azodrin	6923-22-4	223.17	-0.20 ^a	1000000 ^a	-4.141	7.22E-05	7.22E-05	72.21	80	14.7	EDETOX	
83	Benzocaine	94-09-7	165.19	1.86 ^a	1310 ^a	-1.894	1.28E-02	1.20E-02	15.75	80	48	EDETOX	
	4-Aminobenzoic acid		137.14	0.83 ^a	6110 ^a	-2.344	4.53E-03	4.44E-03	27.10				
	Ethyl alcohol		46.07	-0.31ª	100000 ^a	-3.100 ^a	7.94E-04	7.93E-04	792.68				
84	Beta-estradiol	50-28-2	272.39	4.014	308.7	-2.400^{4}	3.98E-03	3.88E-03	1.20	40	38	EDETOX	
85 86	Butachlor	23184_66_0	311.85	0.17ª 4.50ª	20000°	-3.301"	5.00E-04 2.40E_02	4.99E-04	24.96	80 40	1.75	EDETOX	
80	Caffeine	23184-00-9 58-08-2	19419	-0.07ª	21600ª	-1.020 -3.580ª	2.40E-02 2.63E-04	2.00E-02 2.63E-04	5.67	40	32.6	EDETOX	
88	Carbaryl	63-25-2	201.23	2.36 ^a	110 ^a	-1.939	1.15E-02	1.08E-02	1.19	40	73.91	EDETOX	
00	N-methylcarbamate	00 20 2	75.07	-0.52	1412653	-2.638	2.30E-03	2.28E-03	3224.58	10	/ 510 1	2221011	
	1-Naphthol		144.17	2.85 ^a	866 ^a	-0.894	1.28E-01	8.03E-02	69.54				
89	Catechol	120-80-9	110.11	0.88 ^a	461000 ^a	-1.987	1.03E-02	9.88E-03	4556.62	80	1.8	EDETOX	
90	Chloramphenicol	56-75-7	323.13	1.14 ^a	2500 ^a	-4.304	4.97E-05	4.97E-05	0.12	40	2.9	EDETOX	
91	Cinnamyl anthranilate	87-29-6	253.3	3.73	44	-1.512	3.08E-02	2.59E-02	1.14	40	53.3	EDETOX	
	Benzoic acid, 2-amino-		137.14	1.21 ^a	3500 ^a	-2.056	8.79E-03	8.46E-03	29.60				
00	Cinnamyl alcohol	C4 05 7	134.18	1.95ª	7113.9	-1.459	3.4/E-02	3.01E-02	213.97	40	10.55	FDFTOV	
92		04-85-/	33U.4/	2.88°	3/5.9	-3.350 ⁴	4.4/E-04	4.45E-04	0.17	40	12.55	EDETOX	
93 04	DHFA	53-43-0	104.15 288 42	1.1/° 3 22ª	10400" 2 <i>4</i> 42	-2.041 _2 308	2.29E-03	2.20E-03	54.79 164	30 40	24.5 18.45	FDFTOX	
95	Diazinon	333-41-5	304.35	3.81 ^a	105.1	-2.056	8.80E-03	8.31E-03	0.87	40	14.1	EDETOX	
										-			

(continued on next page)

Table 2 (continued)

ID	Material name	CAS	MW	log K _{ow}	Cwater ^{Sat}	log K _p	Kp	Kp ^{corr}	J _{max}	Abso	Absorption (%)		
					(µg/cm ³)		(cm/h)	(cm/h)	(µg/cm²/h)	Est.	Exp.	Source	
96	Diethylene glycol monobutyl ether	124-17-4	204.27	1.25	31000 ^a	-2.819	1.52E-03	1.50E-03	46.60	80	41.81	EDETOX	
	acetate												
	Acetic acid		60.05	-0.17ª	1000000 ^a	-2.194	6.40E-03	6.28E-03	6283.04				
	Diethylene glycol monobutyl ether		162.23	0.56 ^a	1000000 ^a	-2.845	1.43E-03	1.42E-03	1418.07				
97	Dimethoate	60-51-5	229.25	0.78 ^a	23300 ^a	-3.469	3.40E-04	3.39E-04	7.90	40	2.6	EDETOX	
98	Dimethylnitrosamine	62-75-9	74.08	-0.57ª	1000000 ^a	-2.663	2.17E-03	2.16E-03	2158.30	80	3.98	EDETOX	
99	Dinitrochlorobenzene	97-00-7	202.55	2.17ª	722.8	-2.099	7.96E-03	7.63E-03	5.51	40	27.5	EDETOX	
100	Dipropylene glycol methyl ether	34590-94-8	148.2	0.15	571755.2	-2.994	1.01E-03	1.01E-03	577.55	80	0.32	EDETOX	
101	Flutamide	13311-84-7	276.22	3.35ª	315.3	-2.073	8.46E-03	8.02E-03	2.53	40	16.1	EDETOX	
102	Hippuric acid	495-69-2	179.18	0.31 ^a	3750 ^a	-3.235	5.82E-04	5.80E-04	2.18	40	1.2	EDETOX	
103	Lindane	58-89-9	290.83	4.14 ^a	33.7	-1.646	2.26E-02	1.97E-02	0.66	40	25.7	EDETOX	
104	Malathion	121-75-5	330.35	2.36 ^a	143 ^a	-3.463	3.44E-04	3.44E-04	0.05	10	4.48	EDETOX	
105	MbOCA	101-14-4	267.16	3.91 ^a	13.9 ^a	-1.541	2.88E-02	2.44E-02	0.34	40	5.9	EDETOX	
106	MDA	101-77-9	198.27	1.59 ^a	1000 ^a	-2.644 ^a	2.27E-03	2.24E-03	2.24	40	32.9	EDETOX	
107	Methiocarb	2032-65-7	225.31	2.92 ^a	27ª	-1.798	1.59E-02	1.46E-02	0.39	40	15.4	EDETOX	
	N-methylcarbamate		75.07	-0.52	1412653	-2.638	2.30E-03	2.28E-03	3224.58				
	4-(methylthio)-3,5-xylenol		168.26	3.03	1468.8	-1.043	9.05E-02	6.23E-02	91.57				
108	Methyl-Parathion	298-00-0	263.21	2.86 ^a	37.7ª	-2.291	5.12E-03	4.96E-03	0.19	40	8.99	EDETOX	
109	N,N-Diethyl-m-toluamide	134-62-3	191.28	2.18 ^a	1045.2	-2.889 ^a	1.29E-03	1.28E-03	1.34	40	27.7	EDETOX	
110	Nicotinamide	98-92-0	122.13	-0.37ª	500000 ^a	-3.078	8.36E-04	8.33E-04	416.36	80	28.8	EDETOX	
111	Nicotinic acid	59-67-6	123.11	0.36 ^a	18000 ^a	-4.620ª	2.40E-05	2.40E-05	0.43	40	3.3	EDETOX	
112	Nitrobenzene	98-95-3	123.11	1.85 ^a	2090 ^a	-1.405	3.94E-02	3.37E-02	70.49	80	41.1	EDETOX	
113	N-Phenyl-2-naphthylamine	135-88-6	219.29	4.38ª	17.1	-0.619	2.40E-01	1.01E-01	1.73	40	0	EDETOX	
114	n-Propoxyethanol	2807-30-9	104.15	0.28	276663.7	-2.370	4.27E-03	4.20E-03	1160.97	80	3.3	EDETOX	
115	o-cresyl glycidyl ether	2210-79-9	164.21	2.10	2095.7	-1.701	1.99E-02	1.81E-02	37.98	80	10.2	EDETOX	
116	o-toluidine	95-53-4	107.16	1.32 ^a	16600 ^a	-1.619	2.41E-02	2.20E-02	364.55	80	49.8	EDETOX	
117	Paraoxon	311-45-5	275.2	1.98ª	3640 ^a	-3.101	7.93E-04	7.89E-04	2.87	40	15.52	EDETOX	
118	Pentachlorophenol	87-86-5	266.34	5.12 ^a	14 ^a	-0.613	2.44E-01	9.64E-02	1.35	40	1.5	EDETOX	
119	Phosmet	732-11-6	317.32	2.78ª	24.4 ^a	-2.990	1.02E-03	1.02E-03	0.02	10	2.15	EDETOX	
120	Phoxim	14816-18-3	298.3	4.39 ^a	4.1 ^a	-1.544	2.86E-02	2.40E-02	0.10	10	2.9	EDETOX	
121	Pirimicarb	23103-98-2	238.29	1.70 ^a	2700 ^a	-2.878	1.33E-03	1.32E-03	3.55	40	28.2	EDETOX	
	Carbamic acid, dimethyl-		89.09	-0.29	1248465	-2.626	2.37E-03	2.35E-03	2929.94				
	2-(dimethylamino)-5,6-		167.21	1.63	47989.3	-2.091	8.11E-03	7.79E-03	373.93				
	dimethylpyrimidin-4-ol												
122	Progesterone	57-83-0	314.47	3.87 ^a	8.8 ^a	-2.820 ^a	1.51E-03	1.50E-03	0.01	10	0.71	EDETOX	
123	Propoxur	114-26-1	209.25	1.52ª	1860 ^a	-2.590 ^a	2.57E-03	2.53E-03	4.71	40	19.6	EDETOX	
	N-methylcarbamate		75.07	-0.52	1412653	-2.638	2.30E-03	2.28E-03	3224.58				
	2-isopropoxyphenol		152.19	2.09 ^a	4704.6	-1.566	2.72E-02	2.41E-02	113.31				
124	Propylene glycol	57-55-6	76.1	-0.92 ^a	1000000 ^a	-2.952	1.12E-03	1.11E-03	1112.03	80	13.8	EDETOX	
125	Testosterone	58-22-0	288.43	3.32 ^a	270.1	-2.660 ^a	2.19E-03	2.16E-03	0.58	40	34.8	EDETOX	
126	Theophylline	58-55-9	180.17	-0.04 ^a	7360 ^a	-3.512	3.07E-04	3.07E-04	2.26	40	16.9	EDETOX	
127	Thiourea	62-56-6	76.12	-1.08 ^a	142000 ^a	-3.074	8.43E-04	8.41E-04	119.43	80	3.4	EDETOX	
128	Trichlorocarbanilide	101-20-2	315.59	4.74	17.5	-1.485	3.28E-02	2.68E-02	0.47	40	0.392	EDETOX	
129	Trichloromethane	67-66-3	119.38	1.97ª	7950 ^a	-1.796 ^a	1.60E-02	1.50E-02	119.16	80	8.2	EDETOX	
130	Triclopyr	55335-06-3	256.47	2.76	440 ^a	-2.286	5.18E-03	5.02E-03	2.21	40	1.65	EDETOX	
131	Trimethylamine	75-50-3	59.11	-0.38ª	1630000 ^a	-3.720 ^a	1.91E-04	1.90E-04	310.42	80	6	EDETOX	

^a Experimental determined data. K_p^{corr} is the corrected K_p calculated using Eq. (5). J_{max} is calculated using Eq. (6). The metabolites of esters, i.e. carboxylic acid and alcohol moieties, are also listed below the parent material shown as italic.

deviation (RMSE) of most water solubility models are between 0.7 and 1.0 **log** units. The reason being that the average uncertainty in measuring water solubility values is no better than 0.6 **log** units (Hewitt et al., 2009; Wang and Hou, 2011). Considering the prediction accuracy of current QSAR models for water solubility, the standard deviation of the four different predictions is added to the average value to give the consensus value used in the calculations for conservative purposes. The final output then converts to the saturated water solubility using Eq. (7) below.

$$C_{water}^{sat}(\mu g/cm^{3}) = S(mol/L) \times MW(g/mol) \times 1000$$
⁽⁷⁾

Table 3

The seven in silico models employed to predict a consensus (average) Kow value when experimental data are lacking.

Prediction model	Molecular	Modeling	Training	sets	Developer	Remark	Web address/reference
	descriptor	method	п	r^2			
AlogPS/VCCLAB	Atom-based	ANN	12908	0.95	VCCL	Free	http://www.vcclab.org/lab/alogps/
AlogP/Pipeline Pilot	Atom-based	MLR	8364	0.90	Accelrys	Commercial	http://accelrys.com/products/pipeline-pilot/
VGlogP/JCHEM	Atom-based	MLR	893	0.93	Chemaxon	Commercial	http://www.chemaxon.com/
XLOGP3	Atom-based	MLR	8199	0.91	SIOC	Free	http://www.sioc-ccbg.ac.cn/?p=42&software=xlogp3
KOWWIN/EPI SUITE	E Fragment-based	MLR	2447	0.98	EPA	Free	http://www.epa.gov/opptintr/exposure/pubs/episuite.htm
KLogP/JCHEM	Fragment-based	MLR	1663	0.93	Chemaxon	Commercial	http://www.chemaxon.com/
LogP/MultiCase	Fragment-based	MLR	>8000	0.94	Multicase, Inc.	Commercial	http://www.multicase.com/

All these models calculate K_{ow} based on molecular structure. The training sets of these models cover *MW* ranging from 18 to 992. n = number of substances. r^2 = square correlation coefficient.

	-												
The	four	in cilico	model	amployed	to predict a	CONCONCILC	(average)	water colubility	(log S)	volue when	avnarimental	data a	ro lacking
IIIC	iuui	m shired	mouch	CIIIDIOVCU	to predict a	CONSCIISUS	avciage	vvalui solupilluv	LIUE J	value which	CADCIMICIIC	uata a	IC IdUNIIE.

	1 5 1		0,		3 (0)	1	6
Prediction model	Molecular	Modeling	Trainir	ng sets	Developer	Remark	Web address/reference
	descriptor	method	п	r^2			
WSKOW/EPI SUITE	Physicochemical property	MLR	1450	0.97	EPA	Free	http://www.epa.gov/opptintr/exposure/pubs/episuite.htm
Solubility/Pipeline Pilot	E-state indices	ANN	1291	0.91	Accelrys	Commercial	http://accelrys.com/products/pipeline-pilot/
KLogS/MultiCase	Fragment-based	MLR	483	0.95	Multicase, Inc.	Commercial	http://www.multicase.com/
XLOGS	Fragment-based	Read-across	4171	0.82	SIOC	Free	http://www.sioc-ccbg.ac.cn/?p=42&software=xlogs

All these models calculate **log** *S* based on molecular structure. The training sets of these models cover *MW* ranging from 27 to 667 and **log** K_{ow} , -8.5 to 10. n = number of substances. r^2 = square correlation coefficient.

2.4. Determining the percent skin absorption based on calculated J_{max}

According to Kroes et al., the skin absorption (A) of a material can be estimated based on its calculated J_{max} , as shown in Eq. (8).

$$A(J_{max}) = \begin{cases} 10\%, & J_{max} \le 0.1\\ 40\%, & 0.1 < J_{max} \le 10\\ 80\%, & J_{max} > 10 \end{cases}$$
(8)

It has been shown that the esters, such as salicylate, readily hydrolyse or metabolize to corresponding carboxylic acid and alcohol on the skin (Belsito et al., 2007). Taking this into consideration, for any ester, the metabolites, which are the carboxylic acid and alcohol, as well as the parent ester, will be processed through the workflow individually in order to obtain their individual J_{max} values. The final J_{max} value to use in assigning a default skin absorption value representative of the ester material will be based on the chemical entity that gave the highest value to err on the conservative side. The overall workflow of conducting skin absorption prediction is depicted in Fig. 1.

2.5. The conservative nature of the calculations

A hallmark of the method employed in this exercise is conservancy. This conservancy is demonstrated in the calculations of **log** K_{ow} , **log** *S* and **log** K_p where multiple models are used to determine a mean value and/or standard error of estimation are incorporated into the calculations. Conservancy is also invoked in the 80, 40 and 10% category cutoff values for percent skin absorption. Specifically, a review of the experimental percent skin absorption values reported in Table 2 reveals that none of the 131 validation materials have skin absorption >80%; in fact, only four materials (i.e., benzyl acetate, benzyl benzoate, carbaryl and cinnamyl alcohol) have skin absorptions > 65%. Additionally, 26 materials exhibit absorption between 65 and 35%, 57 materials exhibit absorption between 35 and 10%, while 44 materials reveal absorptions of <10%.

3. Model validation

3.1. Validation and refinement of Potts and Guy's skin permeability coefficient K_p model

The original equation to predict skin permeability coefficient was developed by Potts and Guy (1992). This model was developed on Flynn's data set with 93 materials which were not entirely composed of fragrance or "fragrance-like" material. Therefore, we questioned the suitability of this model and resolved to tailor it to fit fragrance and "fragrance-like" materials.

One hundred five (105) fragrance and "fragrance-like" materials (i.e., materials with *MW*, **log** K_{ow} and **log** S falling into the fragrance chemical space) compose data set I (Table 1). All of them have experimentally determined K_p and **log** K_{ow} . The estimated

log K_p are calculated using Potts and Guy's equation (Eq. (2)). The square of linear correlation coefficient (r^2) between experimental and estimated **log** K_p is 0.578 with a standard error (SE) of 0.712 (Fig. 3A). Such results indicated that Potts and Guy's equation was acceptable for fragrance materials. However, Potts and Guy's equation was developed for chemicals of diverse structures and functionality in general. Therefore, 105 fragrance and "fragrance-like" materials in data set I were used to re-fit the parameters of Potts and Guy's equation.

Fig. 3. The correlation of experimental **log** K_p *versus* estimated **log** K_p . (A) Log K_p calculated based on Potts and Guy's equation (Eq. (2)). (B) Log K_p calculated based on Eq. (3).

Fig. 4. Plots of calculated J_{max} versus experimental percent skin absorption. Shaded areas represent absorption zones (10% (light blue), 40% (yellow), and 80% (green)) from Equation (8). (A) The J_{max} of 131 fragrance (blue and red dots) and "fragrance-like" materials (blue and red circles) were calculated through the workflow depicted in Fig. 1. (B) Assuming there are no experimentally derived parameters available, use consensus values to estimate **log** K_{ow} and **log** S, and using Eq. (4) to calculate the K_{p} , most of the calculated J_{max} were shifted right.

The updated Eq. (3), namely RIFM's equation, has the r^2 of 0.703 and SE of 0.594 on data set I, which is a fragrance focused data set (Fig. 3B). The higher r^2 value indicates a better fit of Potts and Guy's equation for the fragrance chemical domain. Therefore, RIFM's equation is used to calculate K_p for fragrance and "fragrance-like" materials.

As mentioned above, K_p is not the final output of the SAM. Rather, it is an intermediate parameter used to calculate the J_{max} (see Eq. (1)). Since the conservative estimation is always favorable, we add the standard error of 0.594 of **log** K_p calculated from RIFM's equation as shown in Eq. (4).

3.2. Validation of the SAM

Validation is crucial to prove the suitability and accuracy of a model. The validation data set (data set II) contains 131 fragrance and "fragrance-like" materials, i.e., their *MW*, **log** K_{ow} and **log** *S* fell within the fragrance defined ranges discussed above, with known experimental skin absorption data (Table 2). The J_{max} was

obtained following the workflow described above and as depicted in Fig. 1. The calculated J_{max} values were plotted in relation to the experimental absorption values for these ingredients, as shown in Fig. 4A. The solid blue dots represent the fragrance materials and the blue circles represent the "fragrance-like" materials. Of these 131 materials, 21 were esters (solid red and open red circles). The $I_{\rm max}$ of the esters was obtained as described in section 2.4. By comparing the actual, experimentally derived absorption data with the assigned default values based on J_{max} , one can clearly see that all of the materials fall below the Kroes et al. (2007) predicted default absorption value boundaries. This means the SAM works very well for the materials in our validation set. It is worth noting that all the esters happen to be under the 80% area. This is because we take the metabolites of esters (i.e., carboxylic acid and alcohol moieties) into consideration and choose the most conservative J_{max} to estimate the skin absorption percentage. As mentioned in section 2.2, the validation data set contains data from in vitro and in vivo data from humans, monkeys and pigs. None of the materials have the experimental determined skin absorption percentage exceeding the

predictions by SAM. This fits the objective of SAM, i.e. giving conservative estimations for human *in vivo* skin absorption instead of using the default value of 100%.

As shown in Fig. 1, when experimentally determined parameters, i.e. **log** K_{ow} , water solubility or K_p are available, those parameters should be used. Our validation data set contained 96 materials with experimentally determined **log** K_{ow} , 82 with experimentally determined water solubility (C_{water}^{Sat}), and 27 had an experimentally determined K_p . Twenty-two (22) had all three parameters experimentally derived (Table 2, marked with ^a). To further test the SAM and understand how skin absorption will map in a case where there are no experimental data available for any of the parameters to calculate J_{max} , we used a predicted **log** K_{ow} , C_{water}^{Sat} and **log** K_p to calculate the J_{max} of our validation set. When we plotted the calculated J_{max} results, most of the materials shifted to the right (Fig. 4B). That is, using all predicted parameter values in one's J_{max} calculation usually results in a more conservative dermal absorption prediction – preferred when experimental data are lacking.

It should be noted that, due to the inherent conservatism built into the SAM by adding the deviation of 0.594 to the calculated **log** K_p and the standard deviation to the average **log** S, there is no need to be extra conservative when dealing with range limit J_{max} values.

3.3. Meeting the OECD principles for QSAR validation

All the QSAR models used in this exercise meets the Organisation for Economic Co-operation and Development (OECD) principles for validation, for regulatory purposes (OECD 2007). Specifically, the models having; 1) a defined endpoint, 2) an unambiguous algorithm, 3) a defined domain of applicability, 4) appropriate measures of goodness-of-fit, robustness and predictivity, and 5) a mechanistic interpretation.

3.4. Applicability domain of the SAM

Our proposed fragrance SAM includes three QSAR models – specifically, **log** K_{ow} , **log** S, and **log** K_p . It is, therefore, necessary to ensure that one's target material falls within the application domain when employing each model. For **log** K_{ow} , the training sets covered materials with molecular weight between 18 and 992 (Table 3). Of these **log** K_{ow} models, four models were trained by a data set containing more than 8000 materials. For example, the training set of AlogPS contains almost 13,000 structurally diverse materials and covers the fragrance chemical space. The final **log** K_{ow} is the average value of these seven models. For the 105 fragrance and "fragrance-like" materials in the data set I, the squared correlation coefficient (r^2) of the experimental and estimated **log** K_{ow} are 0.97, and the root-mean-square deviation (RMSE) is 0.25. This means that the consensus **log** K_{ow} model works very well with fragrance materials.

The training sets for **log** *S* models covered materials with molecular weight from 27 to 667 and **log** K_{ow} from –8.5 to 10 (Table 2). The fragrance chemical space is also covered by these training sets. However, the number of materials in each training set is comparably less than those of **log** K_{ow} models. The largest training set is that of XLOGS, which contains 4171 compounds with known **log** *S* values. The r^2 and RMSE in regression were 0.82 and 0.96 **log** units, respectively (Duan et al., 2012). As discussed above, the uncertainty of the water solubility is significant in experiments. The prediction models usually have high RMSE. Therefore, the estimated **log** *S* from our model was added by the standard deviations from different prediction models for conservative purpose.

 K_p was calculated based on RIFM's equation (Eq. (3)), which is an updated formula from Potts and Guy's equation (Eq. (2)). The training set (data set I) contains 105 fragrance and "fragrance-like" materials, which makes it a fragrance focused model.

The **log** K_p model covered materials with *MW* from 33 to 330 and **log** K_{ow} from -1 to 6.

If the target material falls into these training set ranges, it is considered to be in the fragrance application domain and therefore suitable for processing, as we have described. If the target material does not fall into this application domain, it may still be processed but a low confidence caution should be given (i.e., Low Confidence Warning in Fig. 1).

4. Application of the SAM in safety assessment

We have demonstrated that the SAM is sound to use when experimental skin absorption data are lacking and thus, we propose using the outcomes of this semi-quantitative, mechanistic, *in silico* model instead of the unreasonable 100% default in cases where it will make a difference in thresholds like TTC (Threshold of Toxicological Concern) and MOE or MOS (margin of exposure or margin of safety) (Eaton and Gilbert, 2007; Kroes et al., 2005, 2007).

To demonstrate this, consider the following hypothetical example. Material "X," that meets the above described criteria (see section 2.1), does not have animal data or suitable analogs for read-across to clear it for the toxicity endpoint of interest. The material is used at very low levels and its TTC of $30 \,\mu g/kg/day$ (based on a Cramer Class I material) is considered. The total systemic exposure, based on the default assumption of 100% skin absorption, is $34 \,\mu g/kg/day$. These values are so close that a more representative percent absorption may bring the total systemic exposure below the TTC leading to different risk management. The following steps are taken to calculate absorption based on J_{max} :

- 1. Get the MW (g/mol), and check for experimentally determined parameters of K_p (cm/h), C_{water}^{sat} (mg/L), and **log** K_{ow} . In this case, we know the structure and the MW = 204 g/mol but have no other experimental values.
- 2. Determine **log** *K*_{ow} by calculating it from the seven *in silico* tools of Table 1.

log K _{ow} model	Result
KOWWIN/EPI SUITE	5.48
AlogP/Pipeline Pilot	4.18
VGlogP/JCHEM	3.98
KLogP/JCHEM	4.27
LogP/MultiCase	4.22
XLOGP3	5.08
AlogPS/VCCLAB	4.65
Average ± STD	4.55 ± 0.55

- 3. Calculate K_p (cm/h) by using Eq. (4). That is, **log** K_p (cm/h) = -1.356 + 0.759 × **log** K_{ow} 0.0118 × MW = -1.356 + (0.759 × 4.55) (0.0118 × 204.36) = -0.314. Note that the deviation of 0.594 has been added to the calculated **log** K_p for conservative purposes. Therefore, $K_p = 10^{\log K_p} = 10^{-0.314} = 0.485$ cm/h.
- 4. Correct the K_p by using Cleek and Bundge's equation (Eq. (5)):

$$Kpcorr = Kp / \left(1 + \frac{Kp\sqrt{MW}}{2.6} \right) = 0.485 / \left(1 + \frac{0.485 \times \sqrt{204.36}}{2.6} \right)$$

= 0.132 cm/h.

5. Derive water solubility (*C*_{water}^{Sat}) by determining it from the four *in silico* tools of Table 3.

log S model	Result
WSKOW/EPI SUITE	-5.91
Solubility/Pipeline Pilot	-4.48
KLogS/MultiCase	-4.30
XLOGS	-4.25
Average ± STD	-4.73 ± 0.79

This water solubility is used to calculate J_{max} . For conservative purposes, the standard deviation is added to the average **log** *S*: -4.73 + 0.79 = -3.94. $S = 10 \times \text{log} S = 10 - 3.94 = 0.000114 \text{ mol}/$ L. *S* is converted to $C_{\text{water}}^{\text{Sat}} = S \times MW \times 1000 = 0.000114 \times 204.36 \times 1000 = 23.29 \,\mu\text{g/cm}^3$.

6. Calculate J_{max} as follows: $J_{\text{max}} = K_p^{\text{corr}} \times C_{\text{wat}}^{\text{sat}} = 0.132 \times 23.29 = 3.07 \,\mu\text{g/cm}^2/\text{h}$. According to Eq. (8), the 40% estimated percent skin absorption is assigned to this material. By assigning 40% absorption, the systemic exposure becomes $15.22 \,\mu\text{g/kg/day}$, which is approximately twofold below its determined TTC and now clears the toxicological endpoint of interest.

This example demonstrates the unreasonableness of defaulting to 100% skin absorption when experimental data are lacking and the usefulness of this model in calculating more representative percent absorption values for fragrance or "fragrance-like" materials.

It is worth noting that even though this example uses seven different **log** K_{ow} prediction models and four different water solubility models to obtain the consensus estimated **log** K_{ow} and water solubility values, one does not have to use as many – one may even use other validated models to get a consensus estimation. For example, if only the three free accessible **log** K_{ow} models (i.e. KOWWIN, XIOGP3 and ALOGPS) and two free accessible water solubility models (WSKOW and XLOGS) are used, the final conclusion would not change ($J_{max} = 4.00 \ \mu g/cm^2/h$, in 40% absorption range).

5. Conclusion

We concur with Kroes et al.'s (2007) assumption that 100% skin absorption is not a scientifically supportable default value in the absence of experimental data. Furthermore, we showed that Kroes et al.'s three tier percent skin absorption scheme for cosmetic ingredients fit very well for fragrance ingredients. We developed a specific skin absorption model, namely SAM, for fragrance ingredients whose default absorption value is either 10, 40, or 80%. To which percent absorption domain a fragrance ingredient falls depends on its calculated J_{max}. Our in silico model was validated using 131 fragrance materials with experimental in vitro or in vivo absorption data obtained from either human or pig skin. Although the SAM deviates from the 100% default absorption value, it still has a lot of conservatism built into it. A schematic of the SAM is shown in Fig. 1 and an example of how to use the model is discussed in Section 4. This model is very useful in prioritizing testing, when the estimated exposure is very close to TTC, or when it will make a significant difference in estimating the point of departure.

Funding source

This study was part of an internal research program of the Research Institute for Fragrance Materials, Inc. No third party funding was involved.

Conflict of interest

The authors declare that there are no conflicts of interest.

Transparency document

The Transparency document associated with this article can be found in the online version.

Acknowledgment

The authors would like to thank Dr. David K. Wilcox and Dr. Anne Marie Api for their support and guidance.

References

- Aggarwal, M., Battalora, M., Fisher, P., Hüser, A., Parr-Dobrzanski, R., Soufi, M., et al., 2014. Assessment of in vitro human dermal absorption studies on pesticides to determine default values, opportunities for read-across and influence of dilution on absorption. Regul. Toxicol. Pharmacol. 68, 412–423.
- Api, A.M., Ritacco, G., Hawkins, D.R., 2013. The fate of dermally applied [14C]dlimonene in rats and humans. Int. J. Toxicol. 32, 130–135.
- Barber, E.D., Teetsel, N.M., Kolberg, K.F., Guest, D., 1992. A comparative study of the rates of in vitro percutaneous absorption of eight chemicals using rat and human skin. Fundam. Appl. Toxicol. 19, 493–497.
- Belsito, D., Bickers, D., Bruze, M., Calow, P., Greim, H., Hanifin, J.M., et al., 2007. A toxicologic and dermatologic assessment of salicylates when used as fragrance ingredients. Food Chem. Toxicol. 45, S318–S361.
- Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M.L., Fryer, A.D., et al., 2011. A toxicological and dermatological assessment of macrocyclic lactone and lactide derivatives when used as fragrance ingredients. Food Chem. Toxicol. 49 (Suppl. 2), S219–S241.
- Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M.L., Dekant, W., et al., 2012a. A toxicologic and dermatologic assessment of cyclopentanones and cyclopentenones when used as fragrance ingredients. Food Chem. Toxicol. 50 (Suppl. 3), S517–S556.
- Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M.L., Fryer, A.D., et al., 2012b. A toxicological and dermatological assessment of aryl alkyl alcohol simple acid ester derivatives when used as fragrance ingredients. Food Chem. Toxicol. 50 (Suppl. 2), S269–S313.
- Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M.L., Fryer, A.D., et al., 2012c. A toxicological and dermatological assessment of aryl alkyl alcohols when used as fragrance ingredients. Food Chem. Toxicol. 50 (Suppl. 2), S52–S99.
- Bickers, D., Calow, P., Greim, H., Hanifin, J.M., Rogers, A.E., Saurat, J.H., et al., 2005. A toxicologic and dermatologic assessment of cinnamyl alcohol, cinnamaldehyde and cinnamic acid when used as fragrance ingredients. Food Chem. Toxicol. 43, 799–836.
- Bobin, M.F., Durand, F., Pelletier, J., Martini, M.C., 1997. Dosage of farnesol in the skin. In: Agropolis, V.E. (Ed.), International Symposium on Flavours and Sensory Related Aspects. Cernobbio, Villa Erba, pp. 244–250.
- Bronaugh, R.L., Wester, R.C., Bucks, D., Maibach, H.I., Sarason, R., 1990. In vivo percutaneous absorption of fragrance ingredients in rhesus monkeys and humans. Food Chem. Toxicol. 28, 369–373.
- Cleek, R., Bunge, A., 1993. A new method for estimating dermal absorption from chemical exposure. 1. General approach. Pharm. Res. 10, 497–506.
- Cross, S.E., Anderson, C., Roberts, M.S., 1998. Topical penetration of commercial salicylate esters and salts using human isolated skin and clinical microdialysis studies. Br. J. Clin. Pharmacol. 46, 29–35.
- Duan, B.G., Li, Y., Li, J., Cheng, T.J., Wang, R.X., 2012. An empirical additive model for aqueous solubility computation: success and limitations. Acta Phys. Chim. Sin. 28, 2249–2257.
- Eaton, D.L., Gilbert, S.G., 2007. Principles of toxicity. In: Klaassen, C.D. (Ed.), Casarett & Doull's Toxicology: The Basic Science of Poisons, seventh ed. McGraw-Hill Education, Boston, pp. 11–44.
- EFSA Panel on Plant Protection Products and their Residues, 2011. Scientific opinion on the science behind the revision of the guidance document on dermal absorption. EFSA J. 9, 2294.
- EFSA Panel on Plant Protection Products and their Residues, 2012. Guidance on Dermal Absorption. EFSA J. 10, 2665.
- European Commission, 2004. Guidance document on dermal absorption. (<Sanco/ 222/2000 rev. 7. 19 March 2004. (http://ec.europa.eu/food/plant/protection/ evaluation/guidance/wrkdoc20_rev_en.pdf>), accessed Feb. 3, 2014).
- Fick, A., 1855. V. On liquid diffusion. Philos. Mag. 10, 30–39. ISO 4.
- Flynn, G.L., 1990. Physicochemical determinants of skin absorption. In: Gerrity, T. R., Henry, C. J. (Eds.), Principles of Route-to-route Extrapolation for Risk Assessment: Proceedings of the Workshops on Principles of Route-to-Route Extrapolation for Risk Assessment Held March 19–21, 1990, in Hilton Head, South Carolina and July 10–11, 1990, in Durham, North Carolina, Elsevier, New York, pp. 93–127.
- Ford, R.A., Hawkins, D.R., Schwarzenbach, R., Api, A.M., 1999. The systemic exposure to the polycyclic musks, AHTN and HHCB, under conditions of use as fragrance ingredients: evidence of lack of complete absorption from a skin reservoir. Toxicol. Lett. 111, 133–142.
- Ford, R.A., Hawkins, D.R., Mayo, B.C., Api, A.M., 2001. The in vivo dermal absorption and metabolism of [4-14C] coumarin by rats and by human volunteers under simulated conditions of use in fragrances. Food Chem. Toxicol. 39, 153–162.
- Gilpin, S., Hui, X., Maibach, H., 2010. In vitro human skin penetration of geraniol and citronellol. Dermatitis 21, 41–48.
- Green, D., Jones, C., Williams, S., 2014. In Vitro Human Skin Penetration of Methyl N-Methylanthranilate (Dimethyl Anthranilate). RIFM Report, 66570.
- Green, D.M., Brain, K., 2005. In Vitro Human Skin Penetration of Fragrance Material Geranyl Nitrile. RIFM Report, 47379.

- Green, D.M., Brain, S.I., 2001. In-Vitro Human Skin Penetration of Methyl Eugenol, Estragole, Acetyl Cedrene and OTNE. RIFM Report, 37084.
- Green, D.M., Walters, K.A., 2006. In Vitro Human Skin Penetration of Fragrance Material HMPCC (3 and 4-(4-hydroxy-4-methylpentyl)-3-cyclohexene-1carboxaldehyde) under Both In-use and Occluded Conditions. RIFM Report, 54458.
- Green, D.M., Jones, C., Walters, K.A., 2008. In Vitro Human Skin Penetration of Fragrance Material Dihydromyrcenol under Occluded Conditions from a 70% Ethanol Vehicle. RIFM Report, 55341.
- Guy, R.H., 2010. Predicting the rate and extent of fragrance chemical absorption into and through the skin. Chem. Res. Toxicol. 23, 864–870.
- Hawkins, D.R., Kirkpatrick, D., Aikens, P.J., Whittle, E.B., Saxton, J.E., 1995. Dermal Absorption of (14)C-trichloromethyl Phenyl Carbinyl Acetate in Man. RIFM Report, 23914.
- Hawkins, D.R., Elsom, L.F., Kirkpatrick, D., Ford, R.A., Api, A.M., 2002. Dermal absorption and disposition of musk ambrette, musk ketone and musk xylene in human subjects. Toxicol. Lett. 131, 147–151.
- Hawkins, D.W., Forrest, T.J., Moore, D.H., McTigue, J.J., 1994. The Dermal Absorption of (14)C-BMHCA, (14)C-para-tert-butyl-alpha-Methylhydrocinnamaldehyde in Man. RIFM Report, 23500.
- Hewitt, M., Cronin, M.T.D., Enoch, S.J., Madden, J.C., Roberts, D.W., Dearden, J.C., 2009. In silico prediction of aqueous solubility: the solubility challenge. J. Chem. Inf. Model. 49, 2572–2587.
- Hostynek, J.J., 2008. Permeability of human skin to metal compounds, with focus on nickel and copper. In: Zhai, H., Wilhelm, K.P., Maibach, H.I. (Eds.), Marzulli and Maibach's Dermatotoxicology, seventh ed. Taylor & Francis, New York, pp. 215–226.
- Hotchkiss, S.A.M., 1998. Absorption of fragrance ingredients using in vitro models with human skin. In: Frosch, P., Johansen, J., White, I. (Eds.), Fragrances. Springer, Berlin, Heidelberg, pp. 125–135.
- Isola, D.A., Api, A.M., 2002. In vitro human skin penetration of seven radiolabelled fragrance materials. Toxicologist 66, 165.
- Jimbo, Y., 1983. Penetration of fragrance compounds through human epidermis. J. Dermatol. 10, 229–239.
- Judson, R.S., Martin, M.T., Egeghy, P., Gangwal, S., Reif, D.M., Kothiya, P., et al., 2012. Aggregating data for computational toxicology applications: the U.S. Environmental Protection Agency (EPA) aggregated computational toxicology resource (ACTOR) system. Int. J. Mol. Sci. 13, 1805–1831.
- Keith, D.E., 2003. Bathing the term newborn: personal cleanser considerations. In: Hoath, S.B., Maibach, H.I. (Eds.), Neonatal Skin: Structure and Function, second ed. Taylor & Francis, New York, pp. 211–238.
- Kraeling, M.E.K., Bronaugh, R.L., 1997. In vitro percutaneous absorption of alpha hydroxy acids in human skin. J. Soc. Cosmet. Chem. 48, 187–197.
- Kraeling, M.E.K., Bronaugh, R.L., 2003. In vitro absorption of triethanolamine through human skin. Cutan. Ocular Toxicol. 22, 137–145.

- Kroes, R., Kleiner, J., Renwick, A., 2005. The threshold of toxicological concern concept in risk assessment. Toxicol. Sci. 86, 226–230.
- Kroes, R., Renwick, A.G., Feron, V., Galli, C.L., Gibney, M., Greim, H., et al., 2007. Application of the threshold of toxicological concern (TTC) to the safety evaluation of cosmetic ingredients. Food Chem. Toxicol. 45, 2533–2562.
- Liu, F.C., Hotchkiss, S.A.M., 1997. Comparative Skin Absorption, Metabolism and Protein Binding of the Sensitizers Eugenol and Isoeugenol. RIFM Report, 30499.
- Madsen, J.T., Vogel, S., Johansen, J.D., Sorensen, J.A., Andersen, K.E., Nielsen, J.B., 2011. Percutaneous penetration characteristics and release kinetics of contact allergens encapsulated in ethosomes. Cutan. Ocular Toxicol. 30, 38–44.
- Magnusson, B.M., Anissimov, Y.G., Cross, S.E., Roberts, M.S., 2004. Molecular size as the main determinant of solute maximum flux across the skin. J. Investig. Dermatol. 122, 993–999.
- Mannhold, R., Poda, G.I., Ostermann, C., Tetko, I.V., 2009. Calculation of molecular lipophilicity: state-of-the-art and comparison of **log** P methods on more than 96,000 compounds. J. Pharm. Sci. 98, 861–893.
- Ngo, M.A., O'Malley, M., Maibach, H.I., 2010. Percutaneous absorption and exposure assessment of pesticides. J. Appl. Toxicol. 30, 91–114.
- Politano, V.T., Diener, R.M., Christian, M.S., Hawkins, D.R., Ritacco, G., Api, A.M., 2013. The pharmacokinetics of phenylethyl alcohol (PEA): safety evaluation comparisons in rats, rabbits, and humans. Int. J. Toxicol. 32, 39–47.
- Potts, R., Guy, R., 1992. Predicting skin permeability. Pharm. Res. 9, 663-669.
- Smith, C.K., Moore, C.A., Elahi, E.N., Smart, A.T., Hotchkiss, S.A., 2000. Human skin absorption and metabolism of the contact allergens, cinnamic aldehyde, and cinnamic alcohol. Toxicol. Appl. Pharmacol. 168, 189–199.
- Sundberg, J.P., Nanney, L.B., Fleckman, P., King, L.E., 2012. 23 skin and adnexa. In: Treuting, P.M., Dintzis, S.M. (Eds.), Comparative Anatomy and Histology. Academic Press, San Diego, pp. 433–455.
- Tetko, I.V., Poda, G.I., Ostermann, C., Mannhold, R., 2009. Accurate in silico log P predictions: one can't embrace the unembraceable. QSAR Comb. Sci. 28, 845–849.
- Tonge, R.P., 1995. The Cutaneous Disposition of the Sensitizing Chemicals Hydroxycitronellal and Dinitrochlorobenzene. RIFM Report, 556.
- van Ravenzwaay, B., Leibold, E., 2004. The significance of in vitro rat skin absorption studies to human risk assessment. Toxicol. In Vitro 18, 219–225.
- Wang, J., Hou, T., 2011. Recent advances on aqueous solubility prediction. Comb. Chem. High Throughput Screen. 14, 328–338.
- Watkinson, A.C., Brain, K.R., Walters, K.A., Hadgraft, J., 1992. Prediction of the percutaneous penetration of ultra-violet filters used in sunscreen formulations. Int. J. Cosmet. Sci. 14, 265–275.
- Williams, F., 2004. EDETOX. Evaluations and predictions of dermal absorption of toxic chemicals. Int. Arch. Occup. Environ. Health 77, 150–151.
- Yang, J.J., Krueger, A.J., Roy, T.A., Neil, W., Mackerer, C.R., 1994. In vitro percutaneous absorption of gasoline oxygenates in the rat and human. Toxicologist 14, 104.
- Yano, T., Nakagawa, A., Tsuji, M., Noda, K., 1986. Skin permeability of various non-steroidal anti-inflammatory drugs in man. Life Sci. 39, 1043–1050.