Short Review

RIFM fragrance ingredient safety assessment, 2-undecanol, CAS Registry Number 1653-30-1

a Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
b Member Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
c Member Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE, 20502, Sweden
d Member Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
e Member Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
f Member Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05080-900, Brazil
g Member Expert Panel, University of Wuerzburg, Department of Toxicology, Verbobacher Str. 9, 97078, Wuerzburg, Germany
h Member Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
i Member Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
j Member of Expert Panel, University of Pennsylvania, Perelman School of Medicine, Center in Molecular Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
k Member Expert Panel, The University of Tennessee, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996-4500, USA
l Member Expert Panel, The University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
m Member Expert Panel, The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan

ARTICLE INFO

Keywords:
Genotoxicity
Repeated dose, developmental, and reproductive toxicity
Skin sensitization
Phototoxicity/photoallergenicity
Local respiratory toxicity
Environmental safety

Version: 091720. This version replaces any previous versions.

(continued)
Each endpoint discussed in this safety assessment includes the relevant data that were available at the time of writing (version number in the top box is indicative of the date of approval based on a 2-digit month/day/year), both in the RIFM Database (consisting of publicly available and proprietary data) and through publicly available information sources (e.g., SciFinder and PubMed). Studies selected for this safety assessment were based on appropriate test criteria, such as acceptable guidelines, sample size, study duration, route of exposure, relevant animal species, most relevant testing endpoints, etc. A key study for each endpoint was selected based on the most conservative endpoint value (e.g., PNEC, NOAEL, LOEL, and NESIL).

The Expert Panel for Fragrance Safety is an independent body that selects its own members and establishes its own operating procedures. The Expert Panel is comprised of internationally known scientists that provide RIFM with guidance relevant to human health and environmental protection.

Summary: The existing information supports the use of this material as described in this safety assessment.

2-Undecanol was evaluated for genotoxicity, repeated dose toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity/photoallergenicity, skin sensitization, and environmental safety. Data from read-across analog 3-hexanol (CAS # 623-37-0) show that 2-undecanol is not expected to be genotoxic. Data on read-across analog 2-octanol (CAS # 123-96-6) provide a calculated margin of exposure (MOE) > 100 for the repeated dose toxicity and reproductive toxicity endpoints and show that there are no safety concerns for 2-undecanol for skin sensitization under the current declared levels of use. The phototoxicity/photoallergenicity endpoints were evaluated based on ultraviolet (UV) spectra; 2-undecanol is not expected to be phototoxic/photoallergenic. The local respiratory toxicity endpoint was evaluated using the threshold of toxicological concern (TTC) for a Cramer Class I material; the exposure to 2-undecanol is below the TTC (1.4 mg/day). The environmental endpoints were evaluated; 2-undecanol was found not to be persistent, bioaccumulative, and toxic (PBT) as per the International Fragrance Association (IFRA) Environmental Standards, and its risk quotients, based on its current volume of use in Europe and North America (i.e., Predicted Environmental Concentration/Predicted No Effect Concentration [PEC/PNEC]), are <1.

Human Health Safety Assessment

Genotoxicity: Not expected to be genotoxic. (RIFM, 2017b; RIFM, 2017a)

Repeated Dose Toxicity: NOAEL = 100 mg/kg/day. (ECHA REACH Dossier: Octan-2-ol; ECHA, 2011)

Reproductive Toxicity: Developmental toxicity: 100 mg/kg/day Fertility: 300 mg/kg/day. (ECHA REACH Dossier: Octan-2-ol; ECHA, 2011)

Skin Sensitization: Not a concern for skin sensitization at the current, declared use levels. (RIFM, 2003; ECHA REACH Dossier: Octan-2-ol; ECHA, 2011)

Phototoxicity/Photoallergenicity: Not expected to be phototoxic/photoallergenic. (UV Spectra; RIFM Database)

Local Respiratory Toxicity: No NOAEC available. Exposure is below the TTC.

Environmental Safety Assessment

Hazard Assessment:

<table>
<thead>
<tr>
<th>Hazard Type</th>
<th>Screening-level</th>
<th>Reference Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecotoxicity</td>
<td>Screening-level: 3.28 (BOWIN 3)</td>
<td>(EPI Suite v4.11; US EPA, 2012a)</td>
</tr>
<tr>
<td>Bioaccumulation</td>
<td>Screening-level: 11.68 L/kg</td>
<td>(EPI Suite v4.11; US EPA, 2012a)</td>
</tr>
<tr>
<td>PEC/PNEC</td>
<td>Screening-level: Fish LC50: 2.78 mg/L</td>
<td>(RIFM Framework; Salvito, 2002)</td>
</tr>
</tbody>
</table>

Conclusion: Not PBT or PVE as per IFRA Environmental Standards

Risk Assessment:

Screening-level:

<table>
<thead>
<tr>
<th>Critical Ecotoxicity Endpoints</th>
<th>Screening-level: PEC/PNEC (North America and Europe)</th>
<th>Screening-level: PEC/PNEC (North America and Europe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish LC50</td>
<td>2.78 mg/L</td>
<td>(RIFM Framework; Salvito, 2002)</td>
</tr>
</tbody>
</table>

RIFM PNEC in: 0.00278 µg/L

1. Identification

1. **Chemical Name:** 2-Undecanol
2. **CAS Registry Number:** 1653-30-1
3. **Synonyms:** Methyl nonyl carbinol; sec-Undecylic alcohol; Undecan-2-ol; 2-Undecanol
4. **Molecular Formula:** C₁₁H₂₂O
5. Molecular Weight: 172.31
6. RIFM Number: 6717
7. Stereochemistry: One chiral center and 2 stereoisomers.

2. Physical data

1. Boiling Point: 233 °C (Fragrance Materials Association [FMA]), 239.95 °C (EPI Suite)
2. Flash Point: Not Available
3. Log Kow: 4.21 (EPI Suite)
4. Melting Point: 6.42 °C (EPI Suite)
5. Water Solubility: 49.73 mg/L (EPI Suite)
6. Specific Gravity: 0.830 (FMA)
7. Vapor Pressure: 0.00362 mm Hg at 20 °C (EPI Suite v4.0), 0.01 mm Hg at 20 °C (FMA), 0.0062 mm Hg at 25 °C (EPI Suite)
8. UV Spectra: No significant absorbance between 290 and 700 nm; molar absorption coefficient is below the benchmark (1000 L mol⁻¹ · cm⁻¹)

3. Volume of use (worldwide band)

1. <0.1 metric ton per year (IFRA, 2015)

4. Exposure to fragrance ingredient (Creme RIFM Aggregate Exposure Model v2.0)

1. 95th Percentile Concentration in Hydroalcoholics: 0.0025% (RIFM, 2019)
2. Inhalation Exposure*: 0.0000077 mg/kg/day or 0.00060 mg/day (RIFM, 2019)
3. Total Systemic Exposure**: 0.000071 mg/kg/day (RIFM, 2019)

*95th percentile calculated exposure derived from concentration survey data in the Creme RIFM Aggregate Exposure Model (Comiskey, 2015, 2017; Safford, 2015, 2017).
**95th percentile calculated exposure; assumes 100% absorption unless modified by dermal absorption data as reported in Section V. It is derived from concentration survey data in the Creme RIFM Aggregate Exposure Model and includes exposure via dermal, oral, and inhalation routes whenever the fragrance ingredient is used in products that include these routes of exposure (Comiskey, 2015, 2017; Safford, 2015, 2017).

5. Derivation of systemic absorption

1. Dermal: Assumed 100%
2. Oral: Assumed 100%
3. Inhalation: Assumed 100%

6. Computational toxicology evaluation

1. Cramer Classification: Class I*, Low (Expert Judgment)

<table>
<thead>
<tr>
<th>Expert Judgment</th>
<th>Toxtree v3.1</th>
<th>OECD QSAR Toolbox v3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
</tbody>
</table>

*Due to potential discrepancies with the current in silico tools (Bhatia et al., 2015), the Cramer Class of the target material was determined using expert judgment based on the Cramer decision tree (Cramer et al., 1978). See the Appendix below for further details.

2. Analogs Selected:
 a. Genotoxicity: 3-Hexanol (CAS # 623-37-0)

b. Repeated Dose Toxicity: 2-Octanol (CAS # 123-96-6)
c. Reproductive Toxicity: 2-Octanol (CAS # 123-96-6)
d. Skin Sensitization: 2-Octanol (CAS # 123-96-6)
e. Phototoxicity/Photoallergenicity: None
f. Local Respiratory Toxicity: None
g. Environmental Toxicity: None

3. Read-across Justification: See Appendix below

7. Metabolism

No relevant data available for inclusion in this safety assessment. Additional References: None.

8. Natural occurrence (discrete chemical or composition (NCS)

2-Undecanol is reported to occur in the following foods by the VCF*:

- Allium species
- Apple brandy (Calvados)
- Apple fresh (Maulus species)
- Banana (Musa sapientum L.)
- Blue cheeses

9. REACH dossier

Pre-registered for 2010; no dossier available as of 09/17/20.

10. Conclusion

The existing information supports the use of this material as described in this safety assessment.

11. Summary

11.1. Human health endpoint summaries

11.1. Genotoxicity

Based on the current existing data, 2-undecanol does not present a concern for genotoxicity.

11.1.1. Risk assessment. There are no studies assessing the mutagenic or clastogenic activity of 2-undecanol; however, read-across can be made to 3-hexanol (CAS # 623-37-0; see Section V).

The mutagenic activity of 3-hexanol has been evaluated in a bacterial reverse mutation assay conducted in compliance with GLP regulations and in accordance with OECD TG 471 using the standard plate incorporation method. Salmonella typhimurium strains TA98, TA100, TA1535, TA1537, and Escherichia coli strain WP2uvrA were treated with 3-hexanol in dimethyl sulfoxide (DMSO) at concentrations up to 5000 μg/plate. No increases in the mean number of revertant colonies were observed at any tested concentration in the presence or absence of S9 (RIFM, 2017b). Under the conditions of the study, 3-hexanol was not mutagenic in the Ames test, and this can be extended to 2-undecanol.

The clastogenic activity of 3-hexanol was evaluated in an in vitro micronucleus test conducted in compliance with GLP regulations and in accordance with OECD TG 487. Human peripheral blood lymphocytes were treated with 3-hexanol in DMSO at concentrations up to 10000 μM in the presence and absence of S9 for 3 h and in the absence of S9 for 24 h
3-Hexanol did not induce binucleated cells with micronuclei when tested up to the maximum concentration in either the presence or absence of an S9 activation system (RIFM, 2017a). Under the conditions of the study, 3-hexanol was considered to be non-clastogenic in the in vitro micronucleus test, and this can be extended to 2-undecanol.

Additional References: None.

Literature Search and Risk Assessment Completed On: 02/19/20.

11.1.2. Repeated dose toxicity

The MOE for 2-undecanol is adequate for the repeated dose toxicity endpoint at the current level of use.

11.1.2.1. Risk assessment

There are not sufficient repeated dose toxicity data on 2-undecanol. Read-across material 2-octanol (CAS # 123-96-6; see Section VI) can be used to evaluate the repeated dose endpoint. In an OECD TG 422 study, 10 Sprague Dawley rats/sex/dose were administered 2-octanol via gavage at doses of 100, 300, and 1000 mg/kg/day. Males were dosed for 30–31 days, and females were dosed for 7–8 weeks. One female at 1000 mg/kg/day was euthanized for humane reasons on day 2 of the study (prematuring phase); no clinical signs were observed in the animal after the first administration, and pathological examinations did not reveal the underlying cause of the moribund condition. In the remaining animals in the study, no effects were observed in motor activity, grip strength, sensory reactivity, or urinalysis. Clinical signs such as piloerection, ataxia, decreased activity, and hunched posture/kyphosis were observed in males at the high dose (1000 mg/kg/day) across the treatment period; the same effects, in addition to semi-closed or fully closed eyes, prone posture, and lethargic appearance were observed in females at the high dose during the premating period. Piloerection, ataxia, decreased activity, and kyphosis persisted in high-dose females through the post-coitum period. Food consumption was significantly reduced (~17%) in high-dose females during the premating period, while bodyweight gain was slightly increased in this group at the end of the premating period. Bodyweight gain was statistically significant but did not persist through the post-coitum or post-partum periods, and thus was not considered toxicologically significant. Statistically significant decreases in body weight (6–8%) and food consumption (7–13%) were observed in high-dose females during the post-coitum and post-partum periods, but were only slight in magnitude. A significant increase of neutrophils was recorded in males dosed at 300 mg/kg/day (81%) and 1000 mg/kg/day (87%), but due to the low severity and lack of other associated changes, it was not considered to be adverse. Mean corpuscular volume changes were reported in males, and lymphocyte changes were seen in both sexes, but these effects were not dose-related, and thus were not considered to be treatment-related. Sodium levels were significantly increased in males at all doses (1% in all groups). Calcium levels were significantly increased in males at 300 mg/kg/day (4%) and 1000 mg/kg/day (7%). Albumin (7%) and bile acid (178%) levels were significantly increased in males at 1000 mg/kg/day. Bilirubin levels were significantly increased in females at 300 mg/kg/day (8.6-fold), but this change was not dose-related, and thus was not considered treatment-related; furthermore, the high mean was driven by 1 outlier individual and thus was considered to be incidental. Absolute and relative liver weights were increased in both sexes at the high dose and were statistically significant and treatment-related. This change was accompanied by minimal centrilobular hepatocellular hypertrophy in half of the high-dose males. Hepatocyte hypertrophy could be associated with microsomal enzyme induction secondary to exposure to the test material. Thickening of the non-glandular region of the stomach was observed in most rats of both sexes at the high dose, in 1 of each sex at mid-dose, and in 1 control male at necropsy; however, forestomach lesions are not considered toxicologically relevant to humans. Based on adverse clinical signs in both sexes, as well as body weight and food consumption fluctuations in females, the NOAEL for the repeated dose endpoint was considered to be 300 mg/kg/day (ECHA, 2011).

A default safety factor of 3 was used when deriving a NOAEL from an OECD 422 study (ECHA, 2012). The safety factor has been approved by the Expert Panel for Fragrance Safety*.

Thus, the derived NOAEL for the repeated dose toxicity data is 300/3 or 100 mg/kg/day.

Therefore, the 2-undecanol MOE for the repeated dose toxicity endpoint can be calculated by dividing the 2-octanol NOAEL in mg/kg/day by the total systemic exposure to 2-undecanol, 100/0.000071, or 1408451.

In addition, the total systemic exposure to 2-undecanol (0.071 μg/
kg/day) is below the TTC (30 μg/kg/day; Kroes, 2007; Laufersweiler, 2012) for the fertility/developmental toxicity endpoint of a Cramer Class I material at the current level of use.

Additional References: None.

Literature Search and Risk Assessment Completed On: 02/19/20.

11.1.4. Skin sensitization

Based on existing data and read-across material 2-octanol (CAS # 123-96-6), 2-undecanol does not present a safety concern for skin sensitization under the current, declared levels of use.

11.1.4.1. Risk assessment. Limited skin sensitization studies are available for 2-undecanol. Based on read-across material 2-octanol (CAS # 123-96-6; see Section VI), 2-undecanol is not considered a skin sensitizer. The chemical structures of these materials indicate that they would not be expected to react with skin proteins (Roberts, 2007; Toxtree v3.1.0; OECD Toolbox v4.2). In a murine local lymph node assay (LLNA), 2-undecanol was not found to be sensitizing up to 40%. Additionally, read-across material 2-octanol was not found to be sensitizing up to 100% in a separate LLNA (ECHA, 2011; 001 Key study).

Based on weight of evidence (WoE) from structural analysis, animal studies, and read-across material 2-octanol, 2-undecanol does not present a concern for skin sensitization under the current, declared levels of use.

Additional References: None.

Literature Search and Risk Assessment Completed On: 02/19/20.

11.1.5. Phototoxicity/photoallergenicity

Based on the available UV/Vis spectra, 2-undecanol would not be expected to present a concern for phototoxicity or photoallergenicity.

11.1.5.1. Risk assessment. There are no phototoxicity studies available for 2-undecanol in experimental models. UV/Vis absorption spectra indicate no significant absorption between 290 and 700 nm. The corresponding molar absorption coefficient is well below the benchmark of concern for phototoxicity and photoallergenicity (Henry, 2009). Based on the lack of absorbance, 2-undecanol does not present a concern for phototoxicity or photoallergenicity.

11.1.5.2. UV spectra analysis. UV/Vis absorption spectra (OECD TG 101) were obtained. The spectra indicate no significant absorbance in the range of 290–700 nm. The molar absorption coefficient is below the benchmark of concern for phototoxic effects, 1000 L mol⁻¹ cm⁻¹ (Henry, 2009).

Additional References: None.

Literature Search and Risk Assessment Completed On: 02/18/20.

11.1.6. Local Respiratory Toxicity

The MOE could not be calculated due to a lack of appropriate data. The exposure level for 2-undecanol is below the Cramer Class I TTC value for inhalation exposure local effects.

11.1.6.1. Risk assessment. There are insufficient inhalation data available on 2-undecanol. Based on the Creme RIFM Model, the inhalation exposure is 0.00060 mg/day. This exposure is 2333.34 times lower than the Cramer Class I TTC value of 1.4 mg/day (based on human lung weight of 650 g; Carthew, 2009); therefore, the exposure at the current level of use is deemed safe.

11.2. Environmental endpoint summary

11.2.1. Screening-level assessment

A screening-level risk assessment of 2-undecanol was performed following the RIFM Environmental Framework (Salvito, 2002), which provides 3 tiered levels of screening for aquatic risk. In Tier 1, only the material’s regional VoU, its log KOW, and its molecular weight are needed to estimate a conservative risk quotient (RQ), expressed as the ratio Predicted Environmental Concentration/Predicted No Effect Concentration (PEC/PNEC). A general QSAR with a high uncertainty factor applied is used to predict fish toxicity, as discussed in Salvito et al. (2002). In Tier 2, the RQ is refined by applying a lower uncertainty factor to the PNEC using the ECOSAR model (US EPA, 2012b), which provides chemical class-specific ecotoxicity estimates. Finally, if necessary, Tier 3 is conducted using measured biodegradation and ecotoxicity data to refine the RQ, thus allowing for lower PNEC uncertainty factors. The data for calculating the PEC and PNEC for this safety assessment are provided in the table below. For the PEC, the range from the most recent IFRA Volume of Use Survey is reviewed. The PEC is then calculated using the actual regional tonnage, not the extremes of the range. Following the RIFM Environmental Framework, 2-undecanol was identified as a fragrance material with no potential to present a possible risk to the aquatic environment (i.e., its screening-level PEC/PNEC < 1).

A screening-level hazard assessment using EPI Suite v4.11 (US EPA, 2012a) did not identify 2-undecanol as possibly being persistent or bioaccumulative based on its structure and physical–chemical properties. This screening-level hazard assessment considers the potential for a material to be persistent and bioaccumulative and toxic, or very persistent and very bioaccumulative as defined in the Criteria Document (Api, 2015). As noted in the Criteria Document, the screening criteria applied are the same as those used in the EU for REACH (ECHA, 2012). For persistence, if the EPI Suite model BIOWIN 3 predicts a value < 2.2 and either BIOWIN 2 or BIOWIN 6 predicts a value < 0.5, then the material is considered potentially persistent. A material would be

<table>
<thead>
<tr>
<th>RIFM Framework Screening-level (Tier 1)</th>
<th>LC50 (Fish) (mg/L)</th>
<th>EC50 (Daphnia) (mg/L)</th>
<th>EC50 (Algae) (mg/L)</th>
<th>AF</th>
<th>PNEC (μg/L)</th>
<th>Chemical Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.78</td>
<td></td>
<td></td>
<td>1000000</td>
<td>0.00278</td>
<td></td>
</tr>
</tbody>
</table>

11.2.2. Key studies

11.2.2.1. Biodegradation. No data available.

11.2.2.2. Ecotoxicity. No data available.

11.2.2.3. Other available data. 2-Undecanol has been pre-registered for REACH with no additional information available at this time.

11.2.2.4. Risk assessment refinement. Ecotoxicological data and PNEC derivation (all endpoints reported in mg/L; PNECs in μg/L).

Endpoints used to calculate PNEC are underlined.

Exposure information and PEC calculation (following RIFM Environmental Framework: Salvito, 2002).

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Europe (EU)</th>
<th>North America (NA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Kow Used</td>
<td>4.21</td>
<td>4.21</td>
</tr>
<tr>
<td>Biodegradation Factor Used</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dilution Factor</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Regional Volume of Use Tonnage Band</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Risk Characterization: PEC/PNEC</td>
<td>< 1</td>
<td>< 1</td>
</tr>
</tbody>
</table>

Based on available data, the RQ for this material is < 1. No further assessment is necessary.

The RIFM PNEC is 0.00278 μg/L. The revised PEC/PNECs for EU and NA are not applicable. The material was cleared at the screening-level; therefore, it does not present a risk to the aquatic environment at the current reported volumes of use.

Literature Search and Risk Assessment Completed On: 02/24/20.

12. Literature Search*

- RIFM Database: Target, Fragrance Structure-Activity Group materials, other references, JECFA, CIR, SIDS
- ECHA: https://echa.europa.eu/
- NTP: https://ntp.niehs.nih.gov/
- SciFinder: https://scifinder.cas.org/scifinder/view/scifinder/scifinderExplore.jsf
- National Library of Medicine’s Toxicology Information Services: https://toxnet.nlm.nih.gov/
- EPA ACToR: https://actor.epa.gov/actor/home.xhtml
- US EPA HPVIS: https://ofmpub.epa.gov/opthpv/public_search.publicdetails?submission_id=24959241&ShowComments=Yes &sqlstr=null&recordcount=0&User_title=DetailQuery%20Results &EndPointRpt=Y#submission
- Google: https://www.google.com

Search keywords: CAS number and/or material names.
*Information sources outside of RIFM’s database are noted as appropriate in the safety assessment. This is not an exhaustive list. The links listed above were active as of 05/31/20.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome. RIFM staff are employees of the Research Institute for Fragrance Materials, Inc. (RIFM). The Expert Panel receives a small honorarium for time spent reviewing the subject work.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.fct.2020.111890.

Appendix

Read-across Justification

Methods

The read-across analogs were identified using RIFM fragrance chemicals inventory clustering and read-across search criteria (Date, 2020). These criteria are in compliance with the strategy for structuring and reporting a read-across prediction of toxicity as described in Schultz et al. (2015) and are consistent with the guidance provided by OECD within Integrated Approaches for Testing and Assessment (OECD, 2015) and the European Chemical Agency read-across assessment framework (ECHA, 2017).

- First, materials were clustered based on their structural similarity. Second, data availability and data quality on the selected cluster were examined. Third, appropriate read-across analogs from the cluster were confirmed by expert judgment.
- Tanimoto structure similarity scores were calculated using FCFC4 fingerprints (Rogers and Hahn, 2010).
- The physical–chemical properties of the target material and the read-across analogs were calculated using EPI Suite v4.11 (US EPA, 2012a).
- Jmax values were calculated using RIFM’s Skin Absorption Model (SAM). The parameters were calculated using the consensus model (Shen et al., 2014).
- DNA binding, mutagenicity, genotoxicity alerts, and oncologic classification predictions were generated using OECD QSAR Toolbox v4.2 (OECD, 2018).
- ER binding and repeat dose categorization were generated using OECD QSAR Toolbox v4.2 (OECD, 2018).
- Developmental toxicity was predicted using CAESAR v2.1.7 (Casano et al., 2010).
- Protein binding was predicted using OECD QSAR Toolbox v4.2 (OECD, 2018), and skin sensitization was predicted using Toxtree.
- The major metabolites for the target material and read-across analogs were determined and evaluated using OECD QSAR Toolbox v4.2 (OECD, 2018).
<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Target Material</th>
<th>Read-across Material</th>
<th>Read-across Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Formula</td>
<td>C\textsubscript{11}H\textsubscript{24}O</td>
<td>C\textsubscript{6}H\textsubscript{14}O</td>
<td>C\textsubscript{8}H\textsubscript{18}O</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>172.31</td>
<td>102.18</td>
<td>130.23</td>
</tr>
<tr>
<td>Melting Point (°C, EPI Suite)</td>
<td>6.42</td>
<td>−51.34</td>
<td>−31.60</td>
</tr>
<tr>
<td>Boiling Point (°C, EPI Suite)</td>
<td>239.95</td>
<td>134.75</td>
<td>180.00</td>
</tr>
<tr>
<td>Water Solubility (mg/L, @ 25°C, WSKOW v1.42 in EPI Suite)</td>
<td>197.00</td>
<td>16100.00</td>
<td>1280.00</td>
</tr>
<tr>
<td>Log K\textsubscript{ow}</td>
<td>4.21</td>
<td>1.65</td>
<td>2.90</td>
</tr>
<tr>
<td>J\textsubscript{max} (μg/cm2/h, SAM)</td>
<td>29.80</td>
<td>663.26</td>
<td>137.56</td>
</tr>
<tr>
<td>Henry’s Law (Pa m3/mol, Bond Method, EPI Suite)</td>
<td>7.36</td>
<td>4.07</td>
<td>12.46</td>
</tr>
<tr>
<td>DNA Binding (OASIS v1.4, QSAR Toolbox v4.2)</td>
<td>No alert found</td>
<td>No alert found</td>
<td>No alert found</td>
</tr>
<tr>
<td>DNA Binding (OECD QSAR Toolbox v4.2)</td>
<td>No alert found</td>
<td>No alert found</td>
<td>No alert found</td>
</tr>
<tr>
<td>Carcinogenicity (ISS)</td>
<td>No alert found</td>
<td>No alert found</td>
<td>No alert found</td>
</tr>
<tr>
<td>DNA Binding (Ames, MN, CA, OASIS v1.1)</td>
<td>No alert found</td>
<td>No alert found</td>
<td>No alert found</td>
</tr>
<tr>
<td>In Vitro Mutagenicity (Ames, ISS)</td>
<td>No alert found</td>
<td>No alert found</td>
<td>No alert found</td>
</tr>
<tr>
<td>In Vivo Mutagenicity (Micronucleus, ISS)</td>
<td>No alert found</td>
<td>No alert found</td>
<td>No alert found</td>
</tr>
<tr>
<td>Oncologic Classification</td>
<td>Not classified</td>
<td>Not classified</td>
<td>Not classified</td>
</tr>
<tr>
<td>Repeated Dose Toxicity</td>
<td>Not categorized</td>
<td>Not categorized</td>
<td>Not categorized</td>
</tr>
<tr>
<td>Repeated Dose Toxicity (HESS)</td>
<td>Not categorized</td>
<td>Not categorized</td>
<td>Not categorized</td>
</tr>
<tr>
<td>ER Binding (OECD QSAR Toolbox v4.2)</td>
<td>Non-binder, non-cyclic structure</td>
<td>Non-binder, non-cyclic structure</td>
<td>Non-binder, non-cyclic structure</td>
</tr>
<tr>
<td>Developmental Toxicity (CAESAR v2.1.6)</td>
<td>Non-toxicant (low reliability)</td>
<td>Non-toxicant (low reliability)</td>
<td>Non-toxicant (low reliability)</td>
</tr>
<tr>
<td>Protein Binding (OASIS v1.1)</td>
<td>No alert found</td>
<td>No alert found</td>
<td>No alert found</td>
</tr>
<tr>
<td>Protein Binding (OECD)</td>
<td>No alert found</td>
<td>No alert found</td>
<td>No alert found</td>
</tr>
<tr>
<td>Protein Binding Potency</td>
<td>No alert found</td>
<td>No alert found</td>
<td>No alert found</td>
</tr>
<tr>
<td>Protein Binding Alerts for Skin Sensitization (OASIS v1.1)</td>
<td>No alert found</td>
<td>No alert found</td>
<td>No alert found</td>
</tr>
<tr>
<td>Skin Sensitization Reactivity Domains (Toxtree v2.6.13)</td>
<td>No skin sensitization reactivity domain alerts identified.</td>
<td>No skin sensitization reactivity domain alerts identified.</td>
<td>No skin sensitization reactivity domain alerts identified.</td>
</tr>
<tr>
<td>Metabolism</td>
<td>See Supplemental Data 1</td>
<td>See Supplemental Data 2</td>
<td>See Supplemental Data 3</td>
</tr>
<tr>
<td>Rat Liver S9 Metabolism Simulator and Structural Alerts for Metabolites (OECD QSAR Toolbox v4.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

There are insufficient toxicity data on 2-undecanol (CAS # 1653-30-1). Hence, in silico evaluation was conducted to determine read-across analogs for this material. Based on structural similarity, reactivity, physical-chemical properties, and expert judgment, 3-hexanol (CAS # 623-37-0) and 2-octanol (CAS # 123-96-6) were identified as read-across analogs with sufficient data for toxicological evaluation.

Conclusions

- 3-Hexanol (CAS # 623-37-0) was used as a read-across analog for the target material 2-undecanol (CAS # 1653-30-1) for the genotoxicity endpoint.
- The target material and the read-across analog are structurally similar and belong to a class of secondary aliphatic alcohols.
- The target material and the read-across analog share a secondary hydroxyl group.
- The key difference between the target material and the read-across analog is that the target material has a longer aliphatic chain by 5 carbons compared to the read-across analog. This structural difference is toxicologically insignificant.
- Similarity between the target material and the read-across analog is indicated by the Tanimoto score. Differences between the structures that affect the Tanimoto score are toxicologically insignificant.
- The physical-chemical properties of the target material and the read-across analog are sufficiently similar to enable a comparison of their toxicological properties.
- According to the OECD QSAR Toolbox v4.2, structural alerts for toxicological endpoints are consistent between the target material and the read-across analog.
- The target material and the read-across analog are expected to be metabolized similarly, as shown by the metabolism simulator.
- The structural alerts for the endpoints evaluated are consistent between the metabolites of the read-across analog and the target material.

- 2-Octanol (CAS # 123-96-6) was used as a read-across analog for the target material 2-undecanol (CAS # 1653-30-1) for the skin sensitization, reproductive toxicity, and repeated dose toxicity endpoints.
- The target material and the read-across analog are structurally similar and belong to a class of secondary aliphatic alcohols.
- The target material and the read-across analog share a secondary hydroxyl group.
- The key difference between the target material and the read-across analog is that the target material has a longer aliphatic chain by 3 carbons compared to the read-across analog. This structural difference is toxicologically insignificant.
- Similarity between the target material and the read-across analog is indicated by the Tanimoto score. Differences between the structures that affect the Tanimoto score are toxicologically insignificant.
- The physical-chemical properties of the target material and the read-across analog are sufficiently similar to enable a comparison of their toxicological properties.
- According to the OECD QSAR Toolbox v4.2, structural alerts for toxicological endpoints are consistent between the target material and the read-across analog.
- The target material and the read-across analog are expected to be metabolized similarly, as shown by the metabolism simulator.
- The structural alerts for the endpoints evaluated are consistent between the metabolites of the read-across analog and the target material.

Explanation of Cramer Classification

Due to potential discrepancies with the current in silico tools (Bhatia et al., 2015), the Cramer Class of the target material was determined using expert judgment based on the Cramer decision tree (Cramer et al., 1978).

Q1 Normal constituent of the body? No
Q2 Contains functional groups associated with enhanced toxicity? No
Q3 Contains elements other than C, H, O, N, and divalent S? No
Q5 Simply branched aliphatic hydrocarbon or a common carbohydrate? No
Q6 Benzene derivative with certain substituents? No
Q7 Heterocyclic? No
Q16 Common terpene (see Cramer et al., 1978 for detailed explanation)? No
Q17 Readily hydrolyzed to a common terpene? No
Q19 Open chain? Yes
Q20 Aliphatic with some functional groups (see Cramer et al., 1978 for detailed explanation)? Yes
Q21 3 or more different functional groups? No
Q18 One of the list (see Cramer et al., 1978 for detailed explanation on list of categories)? No, Class Low (Class 1)

References

Unpublished report from Firmenich SA. RIFM report number 44317.

RIFM (Research Institute for Fragrance Materials, Inc), 2017b. 3-Hexanol: Genetic Toxicity Evaluation Using Bacterial Reverse Mutation Test in Salmonella typhimurium TA1535, TA1537, TA198 and TA100, and Escherichia coli WP2 uvrA/pKM101. RIFM Report Number 74383. RIFM, Woodcliff Lake, NJ, USA.

